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Abstract— We present P5, a web-based visualization toolkit that combines declarative visualization grammar and GPU computing
for progressive data analysis and visualization. To interactively analyze and explore big data, progressive analytics and visualization
methods have recently emerged. Progressive visualizations of incrementally refining results have the advantages of allowing users
to steer the analysis process and make early decisions. P5 leverages declarative grammar for specifying visualization designs and
exploits GPU computing to accelerate progressive data processing and rendering. The declarative specifications can be modified
during progressive processing to create different visualizations for analyzing the intermediate results. To enable user interactions for
progressive data analysis, P5 utilizes the GPU to automatically aggregate and index data based on declarative interaction specifications
to facilitate effective interactive visualization. We demonstrate the effectiveness and usefulness of P5 through a variety of example
applications and several performance benchmark tests.
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1 INTRODUCTION

Visualization is useful for understanding, analyzing, and exploring
complex data. Many visualization systems have been developed to help
users perform reasoning, analysis, and exploration tasks by combin-
ing automated statistical computations and interactive visualizations.
For supporting effective visual analysis, systems must provide inter-
active performance to ensure users can remain focused and maintain
their attention [8, 9, 38]. As data continues to grow in volume and
complexity, visualization systems need to leverage high-performance
computing to accelerate data processing and rendering. Most existing
visualization libraries and toolkits [7, 35, 36, 44], however, only use
sequential computation for performing data transformations and visual-
izations; therefore, they are not capable of handling large data and the
associated processing. Some of these toolkits support crafting visual-
izations through the use of declarative grammars [20, 45], but they do
not support constructing a high-performance visualization system. As
multicore CPUs and manycore GPUs have become commonly available
in mainstream computers, a few toolkits [23, 33, 34] have been made to
exploit parallel computing to improve the performance of visualization
rendering. Despite these advances, effective visualization of big data
requires not only decreasing the rendering latency but also increasing
the data transformation speed. Moreover, it is difficult to provide inter-
active performance for visual analysis when the scale of the data size
exceeds the processing capacity of the underlying visualization system.

To support interactive analysis of big data, progressive analytics has
recently emerged as a popular approach for (1) delivering incremental
results to maintain an acceptable level of responsiveness, and (2) al-
lowing users to interact with the intermediate results and better control
the exploration process. Several visualization systems [6, 31, 40], user
studies [17, 46], and frameworks [30, 37, 42] have provided design
guidelines for developing progressive data analytics. However, we lack
visualization toolkits that leverage these design guidelines for building
progressive visualization systems. Moreover, progressive analytics and
GPU-based parallel computing can be combined to provide a better
solution for interactive analysis of big data. A declarative visualiza-
tion toolkit incorporating the capabilities of parallel computing and
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progressive analytics can make building high-performance and scalable
visualization systems a much easier job.

In our prior work, we developed P4: Portable Parallel Processing
Pipelines [24], a web-based visualization toolkit that offers GPU com-
puting with declarative grammar for application programmers to build
high-performance visualization systems. P4 leverages runtime code
generation to create WebGL programs that effectively utilize the GPU
to accelerate both data transformation and visualization rendering, pro-
viding performance that is an order of magnitude faster than the current
state of the art. In this paper, we present P5, a visualization toolkit that
combines declarative visualization and GPU computing for progressive
data analysis and visualization. The design of P5 is motivated by three
major goals.

Progressive Parallel Processing. Parallel computing and progres-
sive processing are two promising approaches for supporting big data
analysis and visualization, and they can also be combined to comple-
ment each other. By exploiting parallel computing for progressive
processing, visualization systems can deliver faster results at each
progression, accelerating the overall analysis and exploration process.
Additionally, enabling progressive processing for GPU computing al-
lows handling data that is larger than the GPU memory capacity. A
framework is needed to effectively combine progressive processing
with GPU computing.

Declarative Progressive Visualization. Implementing either paral-
lel processing or progressive analytics alone for data visualization is
already a nontrivial task. Coupling these two methods for building a
visualization system requires significant programming and software
engineering effort. Hence, a visualization toolkit with an easy-to-use
application programming interface (API) can be helpful for implement-
ing progressive and parallel data transformations and visualizations
in analytics systems. This relieves the huge technical burden on the
designers and programmers for implementing both parallel processing
and progressive visualization from scratch.

Interactive Progressive Analysis. Enabling interactive visualiza-
tion for progressive analytics is important for allowing users to analyze
the intermediate results. For using statistical computations to progres-
sively analyze big data, individual data records are discarded after each
progression; as a result, direct data filtering cannot be used for sup-
porting interactive visualizations. To address this issue, visualization
toolkits should provide functionality for indexing and saving the data
structures required by the user-specified interactions.

To meet these goals, we first contribute a visualization framework
that seamlessly integrates GPU computing with progressive processing.
As a web-based visualization toolkit, P5 leverages and extends P4’s
GPU-based data transformation and visualization capabilities. This al-
lows P5 to effectively facilitate progressive parallel processing. Second,



we contribute an intuitive API with declarative grammar for specifying
progressive data transformations and visualization operations, both of
which effectively run on the GPU. Moreover, P5 automatically gener-
ates indexed data structures for supporting interactive visualization, so
users can interact with the visualization of the intermediate results in
the progressive analysis workflow. We demonstrate the usefulness and
advantages of P5 through a variety of example applications. In addi-
tion, we run performance benchmarks to show that P5 can drastically
improve the speed of progressive visualization and provide interactive
performance for analyzing intermediate results.

2 RELATED WORK

P5 is related to research work in progressive analytics, visualization
toolkits, and interactive visualization systems.

2.1 Progressive Analytics
In the field of computer science, progressive methods are commonly
used for trading off computation latency against quality of results,
where the results can be incrementally refined or improved over time.
Progressive refinement methods [12, 43] were introduced in the area of
computer graphics for supporting interactive rendering, where similar
approaches have been adapted for scientific visualization [18, 22]. In
the area of databases, a long-running thread of research in approxi-
mated query processing [4,21] has provided a basis for progressive data
analysis. With databases supporting approximated query processing,
progressive data analysis systems can trade off accuracy for response
time by returning partial results that are progressively improving. Run-
ning confidence intervals are usually computed and provided with the
results. Fisher et al. [17] showed that incremental visualization of pro-
gressive aggregation results with confidence intervals can allow users to
effectively make early decisions when exploring large datasets. Schulz
et al. [37] presented an enhanced incremental visualization model for
generalizing the progressive process of using partitioned data and vi-
sualization operators to facilitate intermediate visualization updates.
Zgraggen et al. [46] studied the effect of progressive visualization
compared to a blocking condition with significant delays and an ideal
condition with almost no delay. They showed that users performed
equally well with progressive visualizations and ideal condition with
almost no delay in discovering insights, but the blocking condition with
significant delay adversely impacts the analysis process.

By extending the concept of progressive data analysis for visual
analytics [13], progressive visual analytics (PVA) provides visualiza-
tion of the intermediate results and allows analysts to interact with the
intermediate results for steering the analysis process. Steering typically
includes changing the parameters of the analysis methods and visual en-
coding of the visualization, as well as stopping or restarting the analysis.
Recently, researchers have developed several PVA systems for different
analysis tasks and studies. Stolper et al. [40] adapted the SPAM [5]
algorithm in a PVA system for exploring the correlations in electronic
medical records. Badam et al. [6] presented InsightFeed, a PVA sys-
tem for exploring social network feeds, and conducted user studies to
investigate the tradeoffs in user interface design for supporting pro-
gressive visual analytics. Pezzotti et al. [31] developed DeepEyes, a
PVA system that provides visualizations for supporting the design of
neural networks during the training process. Most of these systems
followed the design guidelines provided by Stolper et al [40], which
are useful for designing the analytics and visualization components
in PVA systems. Based on these guidelines, the analytics component
should provide incrementally refining partial results and allow users to
focus on subspaces of interest as well as to ignore irrelevant subspaces.
On the other hand, the visualization component should indicate new
results, support on-demand updates, minimize distractions due to updat-
ing results, and provide interfaces to specify problem subspace. These
design guidelines also provided a basis for designing P5’s API with the
goals of supporting progressive data processing and visualization.

2.2 Visualization Libraries and Toolkits
Many visualization libraries and toolkits have been developed for de-
signing visualization applications and building visual analytics systems.

High-level libraries, such as ggplot2 [44], D3 [7], and Vega/Vega-
Lite [35, 36] provide declarative grammars to reduce the technical
burdens for crafting visualizations. Declarative grammars can decouple
visualization design from execution details and defer control flow con-
cerns to the runtime, which allow programmers to focus on application-
specific design decisions [20]. However, these libraries focus on provid-
ing an easy-to-use programming interface, but do not offer support for
processing and visualizing large data. Application developers need to
incorporate high-performance computing techniques for handling large
datasets, which undo the benefits of declarative visualization specifica-
tion. On the other hand, low-level graphics libraries, such as OpenGL
and VTK, provide fine-grained control and performance, but are tedious
for building advanced visualization systems and data analytics appli-
cations. Besides system performance, these libraries do not provide
support for progressive data processing and visualization. This makes
building visualization systems that incorporate both high-performance
computing and progressive analytics workflows challenging.

Only a few researchers have contributed to research and development
of high-performance toolkits for information visualization. McDonnel
et al. [29] presented a visual programming environment with graphical
user interfaces for composing GPU shaders to create data visualizations.
However, the flexibility for creating customized visualizations is lim-
ited. Ren et al. [34] developed Stardust for providing a programming
interface similar to D3 which uses WebGL to render large data. While
Stardust only focuses on improving rendering performance, it does not
provide support for accelerating data transformations. Fekete et al. [16]
presented ProgressiVis, a Python toolkit for providing a progressive
computation paradigm for implementing exploratory data analysis ap-
plications. However, ProgressiVis only uses sequential computations
and provides no direct support for interactive visualizations. To pro-
vide high performance for progressive data analysis and visualization,
we combine GPU computing and progressive processing in P5. In
addition, we design an easy-to-use API with declarative grammar for
specifying progressive analysis workflows. P5 provides common data
transformations and visualizations for streamlining the implementation
of progressive visualization systems.

2.3 Interactive Visualization Systems

Supporting interactive analysis is important for visualization systems.
Many visualization systems use a server-client architecture for pro-
cessing queries using server-side databases and send the results to the
client for visualization. For example, commercial products such as
Spotfire [2] and Tableau [1] use database systems in cloud computing
infrastructures to process queries for supporting interactive visualiza-
tions. In this approach, every user interaction requires a round trip to
get the results from the database, where the associated queries need to
be evaluated on the entire dataset. To reduce system latency for inter-
active visualization, data indexing techniques, such as data cubes [19],
can be used to compute data aggregates based on the visualized data
dimensions. The interactive scalability is not limited by data size but by
the chosen resolution of the visualizations. Multi-scale data cubes [41]
can be used to support interactive visualizations of multiple resolu-
tions. Specialized data cubes can be designed for specific data types.
Nanocubes [26] use hierarchical structures and compact indexes for
interactive visualizations of spatiotemporal data. Methods based on
data cubes typically create precomputed data aggregates stored in sys-
tem memory to support real-time interactive visualizations. However,
the storage size of data cubes increases exponentially with the num-
ber of data dimensions and polynomially with the resolutions of the
dimensions. When the size of the data cubes is large, processing the
data cubes can incur high system latency. In addition, the required
storage size for the data cubes can be larger than the capacity of the
system memory. To address these issues, Liu et al.’s imMens [28] create
precomputed aggregates as dense data cubes based on the linked data
dimensions in the visualizations, which decompose a full data cube
into several smaller data tiles to reduce storage size. The precomputed
data tiles are then stored in GPU memory to leverage GPU comput-
ing for parallel processing, allowing imMens to support interactive
visualizations of larger datasets with low latency. Beside storage size



and processing speed, methods based on data cubes require prepro-
cessing, which can take a long time before users can start exploring
the data. In our approach, P5 leverages GPU computing to automat-
ically generate small data cubes based on the interactions defined by
the declarative grammar. P5 also automatically updates the data cubes
during progressive data processing. This enables cold-start exploration
of large datasets without precomputation and leverages GPU computing
to accelerate data processing for supporting interactive visualizations.

3 DESIGN

In this section, we first present P5’s progressive visualization model and
system framework that enable progressive processing with GPU-based
parallel data transformations and visualizations. Second, we introduce
P5’s API and declarative grammar for designing and specifying progres-
sive processing pipelines. We also describe our methods for facilitating
interactive visualization during progressive data processing. Last, we
provide the details for our implementation of P5.

3.1 Progressive Visualization Model
P5’s progressive visualization model extends the information visual-
ization Reference Model [8]. A conventional visualization pipeline
based on the Reference Model is shown in Fig. 1(a), where analyti-
cal processing includes data transformations and statistical analysis
methods, and visualization rendering includes visual mapping and view
transformation. With such conventional pipeline, users need to wait
for the processing and rendering of the whole dataset to be completed
before they can see and analyze the results. For large datasets, the
wait time can be very long which may hinder effective visual analysis
process [9]. To provide a progressive analysis workflow, P5 extends
the visualization pipeline based on the Reference Model to adopt the
progressive analytics paradigm as shown in Fig. 1(b).

Users Interact 
Immediately

Partial Visualization 
Results

Partial 
Data

Analytical 
Processing

Visualization
Rendering

Users Interact 
After Wait

Wait for Rendering 
to Complete

Wait for Processing 
to Complete

Analytical 
Processing

Visualization
Rendering

Partial Analysis 
Results

Partitioning

A
utom

atic or M
anual U

pdate

Source Data Source Data

(a) Conventional 
Visualization Pipeline

(b) Progressive 
Visualization Pipeline

Fig. 1. Conventional pipeline (a) versus progressive pipeline (b) for data
visualization. The convention pipeline requires users to wait for analysis
and visualization operations to be completed on the whole dataset before
interaction, while the progressive pipeline processes data in chunks
and provides incrementally refining visualization of results at interactive
speed.

In our model of progressive pipeline, a partitioning operation is first
performed to obtain data chunks from the data source (e.g., files in
local hard disks or server). Analytical processing is then performed
on the data partitions to produce partial analysis results, which can

be visualized and incrementally refined. To support different types of
progressive analytics applications, P5 allows the progressive pipeline to
operate with three different modes: automatic, manual, semi-automatic.
In automatic mode, the pipeline automatically processes the next data
partition after the visualization of the current result is completed. In
semi-automatic mode, analytical processing is progressing automati-
cally, but visualization rendering is performed manually. An explicit
signal is needed to be received by the pipeline to visualize the accu-
mulated partial results. In manual mode, a explicit signal is needed to
perform both analytical processing and visualization rendering. The
operations for partitioning, analytical processing, and visualization are
parallelized via GPU computing and can be adjusted or changed during
progressive processing.
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Fig. 2. System architecture and components of P5 for enabling progres-
sive parallel processing.

3.2 System Framework
Based on our progressive visualization model, P5 extends P4’s frame-
work to facilitate progressive parallel processing. Fig. 2 shows the
system framework of P5. P5 extends the declarative grammar of P4
for specifying data transformations and visualizations, and it uses P4’s
GPU code generator to create and update GPU shader programs at
runtime for progressive processing. The execution controller in P5
executes all the operations listed in the declarative specification based
on the pipeline mode (automatic, manual, or semi-automatic). For data
partitioning, P5 provides a set of data loading methods (HTTP, file sys-
tem, Web Socket, and database connectors) for progressively loading
data from external sources. These methods obtain data partitions from
the data sources and store them in the GPU memory. At runtime, P5
creates GPU programs to perform all the specified data transformations
and visualizations on the GPU. P5 then uses the GPU to merge the new
results with the accumulated values. After accumulation is completed,
P5’s execution controller loads the next data partition for progressive
parallel processing.

3.3 Application Programming Interface
P5 provides an intuitive API for specifying and controlling the progres-
sive workflow. The syntax and high-level operations of P5’s API are
shown in the left of Fig. 2. Following the convention used in P4’s
syntax, progressive operations are specified as a pipeline in P5. The
input data need to be first specified for obtaining data partitions by pro-
gressively loading from a data source. The batch operation is used for
specifying statistical computations and data transformations to process
each data partition, and the results of the batch operation are automati-
cally accumulated to generate the intermediate results. The progress



operation is used for specifying data transformations and visualizations
to analyze the intermediate results during progressive processing. User
interactions to the visualizations can also be specified for selecting,
linking, and correlating results in different visualization views. The
specified pipeline can be executed in automatic, semi-automatic, or
manual mode. At each iteration, the progress operations can be changed
to visualize and analyze different aspects in the intermediate results.
However, the pipeline needs to be restarted if any changes were made
to the batch operations. This is because P5 does not keep the previous
data items in memory, and thus it needs to redo all the computations
from the beginning for making sure the accumulated results are correct.

Fig. 3 shows an example of a P5 pipeline for progressive analysis
of a dataset that contains information about newborn babies and their
parents. This pipeline progressively loads data partitions from a local
file. The batch size is for controlling the size of data partitions in each
progressive loading. When the input data is from a database or server,
a number of data rows or items can be specified for progressive loading
instead of the batch size. In the batch operation, data filtering and
aggregation are performed on the data partitions to obtain the counts of
newborn babies for each combination of the ages of the parents. The
results are then accumulated for visualizing as a 2D heatmap based on
the progress operation.

… .

p5.pipeline()
.input({
  source: ‘file://.../data.csv’,
  batchSize: 500000,
  type: ‘text/csv’,
  delimiter: ‘,’
})
.batch([
  {
    match: {
      MotherAge: [18, 50],
      FatherAge: [18, 70]
    },
    aggregate: {
      $group: [‘FatherAge’, ‘MotherAge’],
      $collect: {
        Babies: {$count: ‘*’}
      }
    }
  }
])
.progress([
  {
    visualize: {
      mark: ‘rect’,
      x: ‘MotherAge’,
      y: ‘FatherAge’,
      color: ‘Babies’
  }
])
.execute({mode: ‘automatic’})
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Fig. 3. Declarative specifications in P5 for progressively processing the
baby birth dataset, in which data filtering and aggregation are performed
to visualize the results in a 2D heatmap.

3.4 Signals and Controls
To control the progressive processing workflow, P5’s API provides
signals and control operations for managing the states and execution
of the pipelines. A P5 pipeline can be started to process and visualize
data by calling the execute function, for which the execution mode
(automatic, semi-automatic, or manual) can be specified. A new batch
size or time bounds for progressive processing and visualization can be
provided for controlling the frequency of the updates. With automatic
mode, the execute function starts to progressively perform the specified
operations until all data are processed. Pipelines with automatic mode
can be controlled by the pause and resume functions. A next function
is provided for updating the visualization views for semi-automatic and
updating both processing results and visualization views for manual
mode. In addition, event signals, onEach and onComplete, are triggered
at end of the each progression cycle and when all the data partitions
are processed, respectively. Event handler functions can be defined to
perform custom operations or other application specific tasks based on
these event signals. For the onEach event, the number of processed
data records and the status of progressive processing are passed to the
event handler.

3.5 Data Transformation
Common data transformations supported in P4, such as deriving new
values, filtering, binning, and aggregating, can be specified in P5’s

pipeline for both the batch and progress operations. Since the progres-
sive process needs to be restarted if any changes were made to the batch
operations, we have extended P4’s declarative grammar for aggrega-
tion to provide more flexibility and better support for progressive data
analysis. Fig. 4 shows P5’s extended grammar for specifying binning
and aggregation operations.

{
  $aggregate: {
    $group: ['MotherAge', 'MotherRace'],
    $include: ['*’],
    $exclude: [‘Father*'],
    $calculate: ['avg', 'sum', ‘count’]
  }
}

{
 $aggregate: {
   $group: ['MotherAge', 'MotherRace'],
   $collect: {
     sumWeight: {$sum: 'BabyWeight'},
     avgMotherAge: {$avg: 'MotherAge'},
     count: {$count: '*'},
     ...

P5 SpecificationP4 Specification

Fig. 4. P5’s extended syntax of data aggregation for allowing multiple
attributes and measures to be included in the results.

Using P4’s declarative grammar, users need to explicitly specify
which data attributes and what metrics (e.g., count, sum, or mean) to
be collected for the aggregation operation. With P5’s extended syntax,
the include and exclude clauses can be used to select or skip any data
attributes, and the calculate clause can be used to calculate all the
metrics using the selected attributes. This can avoid restarts of the
progressive process caused by changes to the aggregation specification
for the batch operation, because users can select all the attributes and
metrics of interest. The process of progressive data analysis only needs
to be restarted when users significantly changed their ways to analyze
the data by using a different set of attributes for filtering and aggregation.
The latency overhead to the parallel aggregation due to supporting this
extension is small, because calculating additional metrics via GPU
computing is trivial.

3.6 Visualization
P5’s API adopts and extends P4’s declarative visualization grammar for
supporting progressive data visualization. Data processing results can
be easily mapped to visual encoding channels, such as color, opacity,
width, height, and position, for generating various visualizations. As
not all analytic methods can be used for progressive data analysis [40],
not all visualization types are suitable for progressive or incremental
visualization. Therefore, P5 only uses a subset of the supported visual-
izations in P4. Fig. 5 lists all the visualizations supported in P5 that can
be used for plotting numeric, categorical, temporal, and geographical
data. In addition, P5 extends P4’s visualization grammar for specifying
multiple visualizations as faceted views.

Fig. 6 shows an example of faceted views as rows for visualizing the
aggregation results of a multivariate time-series dataset. In the facet
specifications, variables can be defined for generating rows or columns
of visualizations based on the layout parameter. The faceted views can
be sorted based on calculating different measures for the visualized
items, such as average values and variances. In this case, three values
are defined for the metrics variable for plotting three area charts ordered
by their variances. During progressive processing, the sort orders are
updated at each iteration to inform the most important view.

Numeric Ordinal / Categorical Temporal Geospatial

Histogram Bar Chart Line/Area Chart Choropleth Map

Geographic MapMulti-Line ChartHeatmap / 2D HistogramBinned Scatter Plot

One
Encoding
Channel

Two
Encoding
Channels

Fig. 5. P5’s visualizations for supporting progressive data analysis and
visualization with different types of data.



{
 "aggregate": {...}
}, {
 "visualize":  {
   "facets": {
     "layout": "rows",
     "variables": {
       "metrics": [
         "VirtualTimeDiff",
         "NetworkEvents",
         "RbTotal",
         ...
       ],
       "colors": ["teal", "purple", "orange", ...]
     },
     "sortBy": {"$var": "metrics"},
     "limit": 3
   },
   "mark": "area",
   "x": "LastGvt",
   "y": "metrics",
   "color": "colors"
 }
}

Fig. 6. Declarative specification for visualizing multivariate time-series
data in faceted views showing the top 3 user-defined variables ordered
by their variances.

3.7 Interaction

Interactive visualizations and multiple coordinated views are useful
for visual analysis of multidimensional data. Users can gain insights
by making a selection in one view to filter data and show correlations
in the other views. However, data filtering cannot be used directly
with progressive processing because individual data items are discarded
after the statistical computations are completed. To support interactive
visualization for progressive processing, P5 automatically generates
data cubes based on the visualized data dimensions for effective data
filtering. P5’s API supports specification of user interactions for linking
visualizations and highlighting selections. Fig. 7 shows an example
for specifying a brushing-and-linking interaction for selecting a range
in the area chart to highlight the corresponding data in the two bar
charts. Because the visualizations are linked at the data level, selection
in one view is associated with the visualized data in all the views.
In the interaction specification, users can just specify the changes in
visual channels for updating the targeted views (view1 and view2)
based on the event (brush) from the source view (view3). During
progressive processing, P5 automatically generates the required data
cubes based on the user specifications for interactive visualization. The
generation of the data cubes is accelerated by GPU computing. To
reduce the memory footprint, P5 creates small data cubes for only the
data dimensions associated with the specified interaction, instead of
creating a large data cube with all the visualized dimensions. For the
example shown in Fig. 7, two 2D data cubes, instead of a 3D data
cube, are created for the interaction that updates the two bar charts
based on the selection on the are chart. This reduces the size of the
data cube from x3 to 2x2, with x representing the resolutions of the
data dimensions. As the number of data dimensions associated with
the interaction increases, this technique can help saving more memory
space.

By default, P5’s execution controller pauses the batch operations
during user interactions. Because both the batch operations and the
processing of data cubes run on the GPU, concurrent execution results
in high latency for interactive visualization. To run batch operations
and support interactions at the same time, P5 can be configured to
extract the data cubes from GPU memory to system memory and uses
the CPU for processing the data cubes. However, this increases the
time for batch operations in each progression due to the overhead of
data transfers. To allow faster processing of the data cubes on the CPU,
we convert the data cubes from a dense format to a sparse format when
extracting them from the GPU memory. This reduces both the memory
footprint and the time needed for processing. To support interaction
with higher resolutions, summed-area tables [14] can also be computed
from the data cubes to ensure interactive speeds. In a summed-area
table, each value at each location is the inclusive sum of all the values
in the data cube up to that location, as shown in Fig. 7 (c) and (d). The
summed-area table can then be used to quickly return the values for
rectangular selections by subtracting the beginning indices from ending
indices, reducing the computation complexity from O(x2) to O(x) in
this example. This method can be used for supporting interactions with
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Fig. 7. Interaction specification (a) for connecting the visualization views
(b) based on the selection of the user. P5 automatically generates the
data cubes (c) for supporting interactive visualization during progressive
processing. Summed-Area Table (d) can also be computed from the data
cubes to support interactive performance for higher resolutions.

more visualized data dimensions as well.

3.8 Outputs and Exports

To allow P5 to be used with other visualization libraries and toolkits,
our API supports exporting the immediate results of progressive pro-
cessing. P5 can output the results in JSON and TypedArray formats, as
it supports these two formats for data inputs. In addition, P5’s API al-
lows callback functions to be defined with the interaction specification
for exporting the results on demand. As shown in Fig. 8, an interaction
can be specified with a callback function that exports the results of the
progressive aggregation. For interactions that are not linked to other
views, we can define the brush within the visualization, and we can
just define one interaction for the faceted views since the selections on
their x-axes are the same. In the callback function, the result exported
from the pipeline is provided as the input. In this example, P5 exports
the progressive aggregation result according to the selection on the
timeline charts. The result is then used as the input for D3 to generate
the customized circular visualization on the right panel. This allows
developers and programs to use P5 with other visualization libraries
and web technologies for building custom visualization systems. In
addition, multiple outputs can be computed and tagged in the batch
operation for creating different progressive visualization views. Fig. 9
shows an example for generating multiple outputs in the batch operation
for creating different views with progressive visualization.

3.9 Implementation

As a web-based toolkit that leverages GPU computing, the implementa-
tion of P5 is based on JavaScript and WebGL 1.0. P5 leverages P4’s
capabilities for performing data transformation and visualization opera-
tions on the GPU, as well as for managing data in the GPU memory,
including progressively loading data chunks and storing the accumu-
lated results. By storing data in WebGL floating-point textures, P5
can support 24-bit precision with values ranging from 2−127 to 2127.
Categorical attributes are managed as integers for processing efficiently
with GPU computing. For progressive processing and visualization, we
implement a new WebGL shader program for P5 to efficiently accumu-
late the data processing results in each progression. For partitioning and
loading data, P5 provides various methods for progressively retrieving
data via various protocols, including FileAPI, HTTP, WebSocket, and
MySQL database. For the remote methods that require a web server, P5
provides server-side modules written in NodeJS for programmers to use
in their server-side programs, which can be used with the progressive
pipelines created by P5 in web applications. Alternatively, program-
mers can use P5’s protocol for progressive data loading in other server
programs that are not based on NodeJS, such as Python and C++.



app.batch([{
   aggregate: {
     $group: ['LastGVT', 'KP'],
     $include: tsMetrics,
     $calculate: ['avg', 'sum']
   }
 }]).progress([{
   visualize: {
     facets: {
       layout: 'rows',
       variables: {
         metrics: tsMetrics.map(m => 'avg.' + m),
         colors: ['teal','purple','orange', ...]
       },
       sortBy: {$var: 'metrics'}, limit: 3
     },
     mark: 'area', color: 'colors',
     x: 'LastGvt', y: 'metrics',
     brush: {
       condition: {x: true, y: false},
       export: {format: 'json'},
       callback: (results) => {
         // pass results to D3
         d3.select(...)
          ….
         .data(results)
         ….
       }
     }
   }
 }
])

Fig. 8. A progressive analytic application implemented by P5 for analyzing large multivariate time-series data using faceted views and interactive
visualizations. P5 allows custom callback functions to be defined in the user interaction for exporting the results of progressive processing to create
customized visualizations, such as the circular chart on the right.

4 EXAMPLE APPLICATIONS

We have built several progressive visualization applications using P5
over the course of its development. Here we present three of these
applications to demonstrate P5’s applicability and usefulness.

4.1 Multivariate Time-Series Analysis
Parallel discrete-event simulation (PDES) is a cost-effective and useful
tool for modeling and researching in many areas, ranging from stud-
ies of complex physical phenomena to the designs of supercomputers.
Therefore, it’s important to ensure the efficiency of PDES to minimize
time and energy. Optimizing the performance of PDES typically re-
quires post-hoc analysis on large multivariate time-series data collected
from simulations. Due to the large size of data generated by PDES,
interactive analysis of the whole dataset is difficult. By collaborating
with PDES researchers, we have designed and built a progressive visual
analytics system using P5 for analyzing the PDES data collected from
the the ROSS simulator [10]. ROSS uses Message Passing Interface
(MPI) for distributed computing, in which each processor entity (PE)
is assigned to a MPI job. Each PE contains a fixed number of kernel
processes (KP) with each KP managing a group of logical processors
for simulating different items in a simulation model. For each entity,
16 performance metrics are collected over the simulation time.

The user interface of our system and the visualizations with their
declarative specification are shown in Fig. 8. The line charts on the left
panel shows the top 3 of the 16 metrics ordered by the overall variances
over time. As ROSS uses the last global virtual time (LastGVT) to keep
track of the time in the simulations, we use LastGVT as the x-axis for all
the line charts. By modifying the $group parameter in the aggregation
specification, the granularity of the line chart can be changed to show
each line as either a PE, KP, or LP based on the selected level of detail.
In addition to showing the temporal behaviors of the top three metrics,
our system shows the communication patterns between PEs using
hierarchical circular visualization methods [25] in the right panel of our
user interface. While all the data processing and visualization of the line
charts are implemented using P5, the hierarchical circular visualization
is implemented using D3. Our system leverages P5 to progressively
process the large time series data and export the results based on user
selections. The specification of the user interaction is highlighted in
green in Fig. 8. According to the operations in the callback function
defined in the interaction specifications, once the user makes a selection
of the line charts, the results corresponding to the selected time range
are exported from P5 to D3 to create or update the circular visualization
in the right panel. In the hierarchical circular visualization, the top
three performance metrics with the highest variances over time are
stacked on the circular visualizations from the inner to outer layers,

which is arranged by the order of the associated PE and KP to show the
distributions and correlations of the communication patterns.

In addition to progressively analyzing PDES data, our system can
also receive data streaming from running simulations via WebSocket.
This allows PDES developers and users to monitor simulations and
detect performance problems, so they can stop problematic simulations
and restart the simulation with better configurations to avoid perfor-
mance bottlenecks. This example application shows the usefulness
of P5’s declarative grammar for specifying aggregation and creating
visualizations in faceted views. It also shows that the user-defined
interactions with callback functions are helpful for building advanced
visualization systems for progressive analysis of large time-series data.

4.2 Progressive and Interactive Visual Analysis
Coordinated and linked views of histograms and summaries are useful
for exploring multidimensional data. To demonstrate P5’s capability
for building this type of application, we use P5 to reproduce the inter-
active visualizations used in the imMens system by Liu et al. [28]. The
imMens system provides linking-and-brushing interactions for visual
querying of big data in binned scatter plots and histograms. To generate
scalable visualizations and to support user interactions, imMens uses
database systems to generate precomputed data tiles based on the visu-
alized data dimensions in all of the views. However, the disadvantage
of this approach is that the visualizations cannot be changed to analyze
other data dimensions, because it relies on data preprocessing.

With P5, the capabilities of progressive and GPU-based data pro-
cessing can be leveraged to incrementally perform parallel aggregation
and visualize different data dimensions without relying on database
systems or data preprocessing. To compare with imMens, we use
the same dataset (Brightkite user check-in [11]) used in imMens, and
we generate the same set of views with the same visual resolutions,
which are a binned geographic map and three bar charts. Fig. 9 shows
the declarative specifications and the visualization views. The input
data source, data schema, and view dimensions are specified in (a).
The batch operations are specified in (b) that progressively derives
new attributes (months, days, and hours) and performs aggregation
and binning based on these new attributes. The results of progressive
processing are visualized according to the specifications in (c), which
generate the views in (d). In addition, the interaction is specified in
(e): highlighting the corresponding data selected by brushing the map
in the three bar charts. All the data transformation and visualization
operations are accelerated by the GPU and are progressively updated.

As this example application shows, P5 can be used to implement an
advanced visualization system to interactively explore big data with
approximately 100 lines of code of declarative grammar. Compared



p.batch([
 {
   aggregate: {
     $bin: [{lat: 256}, {lng: 256}],
     $collect: {values: {$count: '*'}},
   },
   out: 'map'
 },
 {
   derive: {hour: '$hour(time)'},
   aggregate: {
     $group: 'hour',
     $collect: {count: {$count: '*'}}
   },
   out: 'byHour'
 },
 {
   derive: {month: '$month(time)'},
   aggregate: {
     $group: 'month',
     $collect: {count: {$count: '*'}}
   },
   out: 'byMonth'
 },
 {
   derive: {DayOfWeek: '$dayOfWeek(time)'},
   aggregate: {
     $group: 'DayOfWeek',
     $collect: {count: {$count: '*'}}
   },
   out: 'byDayOfWeek'
 }
])

p.progress([
 {
   visualize: [
   {
     id: 'v1',
     in: 'map',
     project: 'geo',
     mark: 'circle', color: 'teal',
      x: 'lat', y: 'lng',
     color: {
       field: 'values',
       exponent: '0.33'
     }
   },
   {
     id: 'v2',
     in: 'byHour',
     mark: 'bar',color: 'teal',
     y: 'count', x: 'hour'
   },
   {
     id: 'v3',
     in: 'byMonth',
     mark: 'bar', color: 'teal',
     y: 'count', x: 'month',
   },
   {
     id: 'v4',
     in: 'byDayOfWeek',
     mark: 'bar', color: 'teal',
     y: 'count', x: 'DayOfWeek'
   }]
 }
])

let p = p5.pipeline(configs)
.input({
 method: 'file',
 source: '/home/p5/brightkitefile',
 schema : {
   uid: "int",
   lat: "float",
   lng: "float",
   time: "time"
 }
})
.views([
 {
   id: 'v1', offset: [0, 0],
   width: 760, height: 720,
 }, {
   id: 'v2', offset: [780, 0],
   width: 380, height: 240
 }, {
   id: 'v3', offset: [780, 240],
   width: 380, height: 240
 }, {
   id: 'v4', offset: [780, 480],
   width: 380, height: 240
 }
])
.preprocess({
  match: {
   lng: [-130, -66],
   lat: [22, 55]
})

p.interact([{
 event: "brush", from: "v1", response: { 
   v2: { selected: { color: 'orange' } }, v3: { selected: { color: 'orange' } }, 
   v4: { selected: { color: 'orange' } } 
  }
}])

a b c

e

d

DayOfWeek

month

hour

Fig. 9. We use P5 to reproduce the dashboard used by imMens for visual exploration of the Brightkite dataset. The specifications of the data and
view (a), batch operations (b), visualization of the results (c) in P5’s declarative grammar are used to generate a set of coordinated and linked views
(d) with the brushing-and-linking interaction specified in (e).

to imMens, which is hard-coded in WebGL, P5 provides flexibility
to explore big data through declarative specifications and automatic
generation of GPU programs and data structures. With the progressive
analysis provided, analysts can easily adjust or change the specifica-
tions of the data transformations and visualizations after inspecting the
initial results. For example, the analysts can change the visualization
specification to show the number of check-ins based on the day of the
week for exploring the weekly check-in patterns of the Brightkite users.

4.3 Cold-Start Data Exploration

In parallel to the development of P5, we have created P5 Play, a web
application to progressively analyze and explore big data using P5’s
declarative grammar. The user interface of P5 Play is shown in Fig. 10,
which is composed of a data panel (a), a control panel (b), an editor (c),
and a visualization dashboard (d). P5 Play leverages the HTML5 File
API [3] for loading data from files in local hard disks, which does not
require data uploads via the Internet. Currently, P5 Play can support
JSON and CSV file formats. The data panel allows users to select a data
file and lists all the data attributes in the selected file. The editor is used
to provide the declarative specifications to progressively process the
data and display the visualizations of the incrementally refining results
in the dashboard. The control panel manages the progressive workflow,
where users can reset, pause, or proceed to the next progression. One
of the three modes for configuring P5 (automatic, manual, or semi-
automatic) can be selected. The two progress bars show the percentage
of the data processed (blue) and visualized (green). This control panel
is implemented using P5’s signal and control functions as described in
Sect. 3.4. Once the data file is loaded and the declarative specifications
are inputted, users can use the control panel to start exploring the data.
P5 Play allows a cold-start exploration of big data without the need
of data preprocessing or reformatting the data into a database system.
By providing progressive data analysis, users do not need to wait until
data processing and rendering are completed for the entire dataset.
Instead, users can analyze the intermediate results, adjust or change
the visualization specifications, and restart the progressive analysis
process with new analytical methods, if needed. With exploratory
visual analysis, this allow users to create and verify hypotheses at a
much faster rate.

5 PERFORMANCE BENCHMARKS

Here we provide the performance benchmarks to evaluate P5. All our
benchmarks were performed in Google Chrome 73.0.3683.75 (64-bit)
on a desktop computer with a quad-core 3.6 GHz Intel i7-4790 CPU
and a Nvidia GTX Titan graphic card connected by PCI Express.

Fig. 10. P5 Play allows users to progressively analyze multidimensional
data using declarative visualization grammars. P5 Play’s user interface
consists of a side panel (a) for selecting data files and listing the data
attributes, a control panel (b) for starting and pausing progressive op-
erations, a text editor (c) for editing declarative specifications, and a
dashboard (d) for displaying the output visualizations.

5.1 Progressive Analysis Performance

To measure P5’s performance for progressive data processing and visu-
alization, we generate a dataset with 100 millions of data records with
random samples drawn from normal distributions. Each data record
contains 3 integer attributes, 4 float attributes, and 4 categorical at-
tributes. For loading the data, we use a server-client setting, where the
generated dataset is stored in the server and the client progressively
loads the data chunks from the server via HTTP request. In this bench-
mark, we use the data transformation and visualization operations in
Fig. 3. To show P5’s advantage over existing visualization libraries for
progressive visualization, we compare P5 to D3 [7] and Stardust [34].
While D3 provides a flexible API with declarative grammar for render-
ing visualizations on SVG, Stardust leverages WebGL for rendering
with a similar API to D3. To implement progressive visualization using
D3 and Stardust for our benchmark tests, JavaScript’s Array functions
are used to implement the data transformation operations, and the APIs
of D3 and Stardust are used to visualize and upate the results. Since
P5 uses TypedArray as the default data type for the input while D3 and
Stardust cannot work with TypedArray, the benchmark tests for D3 and
Stardust use JSON as the data type of the input, and both JSON and
TypedArray are used for P5. Fig. 11 shows the benchmark results of
D3, Stardust, and P5 for progressive processing and visualization of



Fig. 11. Completion time for D3, Stardust, and P5 to progressively
process and visualize a dataset with 100 million data records.

100 million data records.
As shown in the results, D3 and Stardust have similar completion

times. Since Stardust only utilizes the GPU for rendering but not data
processing, it performs data transformations on the CPU and transfers
the results to the GPU for visualization rendering. Although Stardust
is faster than D3 for rendering, the overhead due to the data transfers
between the GPU and CPU makes Stardust have a similar completion
time comparing to D3. With P5, data transfers between the GPU and
CPU are also required, but both data transformations and visualization
renderings are performed on the GPU, which drastically improve the
overall performance. Comparing to D3 and Stardust, P5 with JSON
is about 3.5 X faster, and P5 with TypedArray is 10 X faster. Using
TypedArray as the data type can make data transfers between GPU
and CPU more efficient, allowing P5 to achieve better performance
comparing to JSON. Besides performance, both D3 and Stardust require
significant programming efforts to implement the operations for data
partitioning, progressive data loading, and visualization updates. In
contrast, P5’s API allows application programmers to easily specify
these operations, providing both high productivity and performance.

In addition to the overall completion time, we run a performance test
to measure the time needed by each progression with different batch
sizes (100K, 500K, 1M, and 2M). Each test runs for 10 progressions for
each batch size and measures the average time needed to complete all
the operations. The results are shown in Fig. 12, where we can see that
P5 can provide a better response time for progressive processing. The
results also indicate that P5 can not only provide a better performance
for progressive data analysis but also can better support streaming data
visualizations with a larger data and at a faster rate. As we can see from
this benchmark test, P5 can support a streaming rate of one million data
items per second, with each data item containing 10 data dimensions.

Fig. 12. Average time (ms) for D3, Stardust, and P5 to progressively
process and visualize data with different batch sizes.

5.2 Interactive Performance
For evaluating the interactive performance, we compare the interaction
latency of P5 with imMens [28]. As shown in Sect. 4.2, to explore
the Brightkite dataset, P5 can be used to implement the same visu-
alization views with user interactions as imMens. Here we compare
the brushing-and-linking interaction for P5 and imMens. With the
brushing-and-linking interaction, the user makes a rectangular selection
on the geographic map, and then the corresponding statistical values
are highlighted in the three bar charts. We add instrumentation in P5
to measure the interactive performance for each user interaction, and
we use the Frame Rate Meter in Google Chrome to obtain the aver-
age frame rate for imMens. For both P5 and imMens, we perform
20 brush selections with 20 random rectangular areas and obtain the
average frame rate. For P5, we measure the performance for the tech-
niques using dense and sparse data cubes as described in Sect. 3.7. The
benchmark results are shown in Fig. 13.

Fig. 13. Average frame rate for interactive visual querying of the Brightkite
dataset with P5 and imMens.

As the results show, imMens achieved 38 frames per second while P5
achieved 9 and 36 frames per second with dense and sparse data cubes,
respectively. It is expected that imMens has a better performance since
it uses precomputed data cubes with the processing function hard coded
in WebGL. For P5 with dense data cubes, because we use different
WebGL textures for storing the progressive processing results and the
data cubes for supporting the interactions, progressive processing needs
to pause. This causes overheads to the system response time. When
using sparse indexing, P5 computes the sparse data cubes from the
dense data cubes and uses CPU for processing. This avoids pausing
the progressive processing due to user interactions. As shown in the
benchmark results, using sparse data cubes allows P5 to achieve better
performance and is close to imMens’ performance. As noted, the
dataset used for this benchmark test has many zero values on the
binned geographic map. This is the primary reason why P5 with sparse
data cubes has a better interactive performance. For data that the
sparse data cubes cannot take advantage of, we expect the performance
difference between the sparse and dense data cubes to be small. In our
current implementation of P5, Summed-Area Table cannot be used to
support more two data dimensions with 2 or more views. Therefore,
we did not test the interactive performance of P5 with the method
based on Summed-Area Table. We expect it to have better performance
than sparse data cubes, and we plan to improve our implementation
in the future. Nonetheless, P5 with dense data cubes can achieve
9 frames per second, with the interactive latency being around 110
ms. According to the studies on the effect of interaction latency on
visual analysis [8,27], this level of interactive latency is still considered
to be effective for supporting interactive analysis with visualizations.
Moreover, the latency is not affected by larger data sizes since it is only
affected by higher resolution, specified for user interactions. In addition,
P5 provides more flexibility with declarative grammar and progressive
visualization. Users can change the specifications to visualize and
interactively explore different data dimensions.

6 DISCUSSION AND FUTURE WORK

The current implementation of P5 is an initial effort to develop a declar-
ative visualization toolkit that is easy to use and high performance



for building progressive visual analytics systems. There remain many
features that can be added to better support progressive data analysis
and visualization. Here we discuss several possible extensions for
enhancing P5 as well as the limitations that currently exist.

The statistical analysis and visualization methods provided by P5
can already support a large set of common visual analysis tasks for
data exploration applications. However, exploratory data analysis of-
ten requires clustering and dimensionality reduction methods, such as
K-Means and PCA, for exploring high-dimensional datasets. Many of
these machine learning methods have high computational complexity,
which causes long completion time for large datasets. Enabling user in-
volvement in such methods with intermediate feedback and control can
better facilitate interactive data exploration [30]. Recently, researchers
from different domains, including visualization, data management,
and machine learning, have begun to collaborate on addressing the
challenges in progressive visual analytics [15]. It is expected that in-
termediate feedback and user involvement will be supported in more
data analytics and machine learning methods, which can be used with
progressive visualization. As P5 only supports common data trans-
formations and statistical analysis methods, we plan to make P5 to
be easily interfaced with other data analytics and machine learning li-
braries. When the results of incremental analytics methods can be fitted
into GPU memory, P5 can retrieve the intermediate results from other
libraries and incrementally render the visualizations. For example, the
optimized t-SNE method [32] in the TensorFlow.js [39] library can be
used for exploring high-dimensional data in 2D embeddings, and the in-
termediate results can be transferred to P5 for progressive visualization,
which allows users to monitor the progress and adjust the parameters
for steering the exploration process. When the size of the dataset or
analysis results is large than the GPU memory capacity, P5 can still
support data analytics methods that incrementally append results to
visualizations. The visualizations of the intermediate results from these
methods can be stored as images, and image scaling can be used to
adjust the extents and size of the visualization according to the updates
in the domains (e.g., maximum and minimum values) of the results.
This method allows common visualizations with overlapping marks,
such as a scatterplot, to be used for progressive visualization. How-
ever, this method cannot be used with some visualization types. For
example, parallel coordinates plots are difficult to use for progressive
visualization, because the change of maximum and minimum values
on each of the parallel axes makes it difficult to scale the image to
properly represent both the new and previously processed data. Unless
the extents and domains of all the data are known in advance, such
visualization types are difficult to use with progressive data analysis.
In addition, we plan to make P5 work more efficiently with web-based
data analytics libraries that use WebGL for GPU computing, such as
TensorFlow.js. These libraries typically store their data and analytic
results in WebGL textures. We can allow plugins in P5 for specifying
the procedures to retrieve data from WebGL textures to P5’s shader
programs for visualization rendering. This can avoid the performance
bottleneck due to the data transfer between the CPU and GPU when
passing the analysis results from a WebGL-based data analytics library
to P5.

While progressive visualization allows users to make early decisions
and steer the analysis process, showing the uncertainty in the inter-
mediate results is important. P5 currently lacks support for assessing
and visualizing uncertainty. P5 only provides several metrics, such
as sample means and variances, to programmers, and they need to
implement their own mechanisms for showing uncertainty information
in their applications. In addition, the current version of P5 only sup-
ports sequential sampling and partitioning for exploratory data analysis,
which users typically do not know the structures and characteristics
of the dataset for choosing a sampling method. For structured data
files and database systems, random sampling method can be used, and
the programmers can implement other sampling methods based on the
needs of their applications. In our future work, we plan to provide
more support in assessing uncertainty, such as calculating confidence
intervals, as well as developing methods to visualize the uncertainty for
better facilitating progressive data analysis.

Besides assessing uncertainty, P5 also has limitations on specifying
interactions on multiple visualizations. P5’s API can be used to specify
interactions that link one view to many views (e.g., the example appli-
cations in Sect. 4.2). However, interactions that link many views to
many views (e.g., linked scatter plot matrices) cannot be defined via
P5’s API in one specification. Specifications of such interactions re-
quire multiple expressions. In addition, the generation of data cubes for
supporting user interactions could create large overhead to progressive
processing. Because P5 stores the results of progressive processing and
the data cubes in different textures for processing with two different We-
bGL shader programs, the time needed for each progression is at least
doubled. For the two WebGL shader programs, a large subset of the
computations might be the same since the data cubes include all the vi-
sualized data dimensions. Merging these operations properly can avoid
duplicated computations, which can remove the overhead to progres-
sive processing due to the computations for generating the data cubes.
We plan to address these issues by extending our API and improving
our framework for progressive parallel processing in future work. In
addition, we plan to extend P5 to include high-level interactions for
programmatic selection of features (e.g, hot spots and outliers) from the
visualizations of aggregation, clustering, or dimensionality reduction
results. Most existing declarative visualization toolkits [7, 35, 36] only
provide low-level interaction specification for defining how to make
selections by the users. This approach cannot effectively support com-
mon visual analysis tasks that make use of machine learning algorithms.
For example, selecting all the major clusters to compare their statistics
in faceted visualization views requires the users to manually make
multiple selections. To address this, high-level interaction specification
for describing what to select, instead of how to select, is needed. As we
are adding several progressive clustering and dimensionality reduction
methods to P5, we also plan to provide declarative grammar with high-
level interaction specification for programmatic selection of insights
from the results of these data analytics methods. P5 with programmatic
selection (P6) will be an even more attractive and powerful toolkit for
creating data analysis and visualization solutions.

P5 should be easily adopted by application developers and data
analysts given its simplicity and performance advantage. Public deploy-
ment and collecting user feedback can help us improve and extend P5.
We have set up a work plan for pursuing these.

7 CONCLUSION

Visualization has become an essential tool in the fast growing areas of
data driven discovery, problem solving, storytelling, and learning. The
accessibility of existing information visualization software tools helps
promote the widespread use of visualization. In many real-world appli-
cations, however, the dynamic nature of the data and complex analysis
needs demand high performance, progressive processing capabilities
that are not generally offered by current toolkits. P5 has been created to
meet this demand. We leverage declarative grammars to make progres-
sive visualization and GPU computing more accessible and flexible,
allowing more people to use them for building interactive visualization
systems. The current implementation of P5, as demonstrated, and the
planned extensions promise to support a wide-range of emerging big
data applications as well as further increase the impact of visualiza-
tion as an enabling technology. The source code, documentations, and
examples of P5 can be found at https://github.com/jpkli/pv.
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