
1

P4: Portable Parallel Processing Pipelines
for Interactive Information Visualization

Jianping Kelvin Li and Kwan-Liu Ma, Fellow, IEEE

Abstract—We present P4, an information visualization toolkit that combines declarative design specification and GPU computing for
building high-performance interactive systems. Most of the existing information visualization toolkits do not harness the power of
parallel processors in today’s mainstream computers. P4 leverages GPU computing to accelerate both data processing and
visualization rendering for interactive visualization applications. P4’s programming interface offers a declarative visualization grammar
for rapid specifications of data transformations, visual encodings, and interactions. By simplifying the development of GPU-accelerated
visualization systems while supporting a high degree of flexibility and customization for design specification, P4 narrows the gap
between expressiveness and scalability in information visualization toolkits. Through a range of examples and benchmark tests, we
demonstrate that P4 provides high efficiency for creating interactive visualizations and offers drastic performance improvement over
current state-of-the-art toolkits.

Index Terms—information visualization, interactive visualization, parallel data processing, GPU computing, data exploration

F

1 INTRODUCTION

V ISUALIZATION proves to be effective for reasoning and
exploring large and complex data, as it can effectively

augment human cognition to gain insight from massive
information [1]. Visualization systems must provide inter-
active performance for effective data exploration and anal-
ysis [2], [3]. As the trends of mainstream computer hard-
ware are dominated by parallel and manycore processors,
visualization software should effectively leverage parallel
hardware to improve performance. In particular, Graphic
Processor Units (GPUs) in mainstream computers provide
massive computing power to boost the performance of visu-
alization systems. However, exploiting the potential of GPU
computing for interactive visualization is not a trivial task
for visualization designers and programmers. Furthermore,
interactive visualization requires both data processing and
visualization rendering to be efficient, which needs not only
parallel rendering but also general-purpose processing on
the GPU (GPGPU).

Many visualization toolkits [4], [5], [6], [7] provide a
high degree of expressiveness with declarative grammars
for rapid specification of visualization design, which per-
mits high productivity in developing visualization systems.
However, an equally important quality of a visualization
toolkit is its support for performance. Most existing infor-
mation visualization toolkits lack parallel processing sup-
port to build high-performance interactive systems. Our
work attempts to fill the gap between the expressiveness
and high performance of visualization toolkits.

In this paper, we present P4, a visualization toolkit
for building GPU-accelerated information visualization sys-
tems. Our design addresses four primary goals.

Performance. Nowadays, datasets with several million

• J. K. Li and K-L. Ma are with the Department of Computer Science,
University of California, Davis, CA, 95616.
E-mail: {kelli,klma}@ucdavis.edu

records are common. Modern GPUs typically available in
commodity personal computers possess enough memory
capacity and computing power for storing and processing
such large data. P4 exploits GPU computing to provide
interactive performance for exploratory visual analysis, ac-
celerating both data processing and visualization rendering.
P4 also efficiently allocates GPU resources to be shared
between data processing and rendering, providing seamless
interoperability to ensure high performance.

Productivity. An easy-to-use programming abstrac-
tion is necessary for productive development of high-
performance visualization systems. P4’s application pro-
gramming interface (API) is based on the semantics of in-
formation visualization, allowing declarative specifications
of common data transformations, visual encodings, and
interactions. P4 makes it possible for visualization designers
with little or no knowledge in GPU programming to build
high-performance interactive systems.

Programmability. Providing a high-level programming
abstraction for parallel processing and visualization de-
sign helps productivity, but it may restrict programma-
bility as users are limited to the provided functionalities.
For added programmability, P4 allows user-defined logics
for customizing data transformation and visual encoding.
At runtime, P4 synthesizes user-defined logics and design
specifications to create effective GPU programs for data
processing and rendering.

Portability. Web-based visualization systems are in wide
use. To support the development of web-based visual-
ization applications, P4 leverages a standardized graphics
API (WebGL) to parallelize both data transformation and
visualization, providing portable performance for different
types of GPUs with widely varying numbers of processor
cores. Applications made by P4 can be run on modern
browsers without any plugin, allowing access across com-
puting devices. P4 can be used seamlessly with different
web technologies and other visualization libraries to build

2

interactive systems.
To achieve these four design goals, we combine GPU

computing and declarative specification for interactive
data visualization. P4 offers a programming interface with
declarative grammar to leverage GPU computing for ac-
celerating both data transformations and visualziations. We
show how P4’s system architecture and parallel processing
framework allow declarative visualization grammar to be
used with GPU computing. By combining runtime code
generation and GPGPU techniques, we have made P4 a flex-
ible, high-performance, and extensible visualization toolkit.
In a range of examples, we demonstrate the usefulness
and efficacy of P4 for creating interactive visualization and
supporting exploratory visual analysis. We also describe
three applications built with P4 to show the effectiveness of
P4 for developing high performance visualization systems.
Our benchmark testing shows that P4 provides more than
an order of magnitude improvement in interactive perfor-
mance comparing to the state-of-the-art systems.

2 RELATED WORK

Our work aims to narrow the gap between expressiveness
and performance in visualization toolkits by incorporating
declarative specification and high-performance visualiza-
tion techniques in P4.

2.1 Visualization and Graphics Toolkits

Many visualization libraries provide declarative grammars
for designing information visualization applications. Declar-
ative grammars can decouple specifications of visualization
and interaction from execution details and defer control
flow concerns to the runtime, which allow programmers
to focus on application-specific design decisions [8]. The
Grammar of Graphics by Wikinson [9] is applied as the
foundation of declarative grammar for specifying visual
encodings in many popular visualization toolkits, such as
ggplot2 [5], Protovis [10], and D3 [4]. In addition to visual
encoding, Vega [6] and Vega-Lite [7] provide declarative
grammars for specifying interactions. However, these toolk-
its only use serial computation on the CPU, and thus can-
not provide interactive performance for large data without
applying additional high-performance visualization tech-
niques.

As GPUs are prevalent in commodity computers, li-
braries and tools for GPU programming become useful
for developing high-performance visualization systems. For
scientific visualization, GPU computing has been broadly
adopted to boost system performance. However, the adop-
tion rate of GPU computing is much slower in the field
of information visualization. This is because parallelizing
the entire information visualization pipeline is challenging.
In particular, GPGPU techniques [11], [12] are needed for
data transformation in addition to parallel rendering for
visualization. A common approach is to use a graphics API
(e.g, OpenGL [13] and WebGL [14]), where the algorithms
for both data transformation and visualization are embed-
ded in shader programs. Using a graphics API for com-
mon data transformation requires expressing data in vertex
and pixel space, which makes GPU programming more

difficult. Newer graphics APIs may provide some support
for embedding general purpose computations along with
rendering (e.g., Compute Shader [15] in OpenGL 4.3+), but
programmers are still required to be familiar with OpenGL’s
graphics pipeline. Another approach is to use a GPGPU
API (e.g., OpenCL [16] or CUDA [17]) for data transfor-
mation, and then use a graphics API for visualization. In
this case, application developers need to be familiar with
not only two different APIs but also the inter-operation
between them. Even with libraries that are designed for
making GPGPU programming easier, such as Thrust [18]
and Boost.Compute [19], a significant amount of software
engineering effort is still required.

Researchers in the information visualization community
have also investigated alternative approaches. McDonnel et
al. [20] presented a visual programming environment with
graphical user interfaces for composing GPU shaders to
create data visualizations. However, graphical user inter-
faces can rarely provide the flexibility needed to create cus-
tomized visualizations. Ren et al. [21] developed Stardust to
provide a programming interface similar to D3 to render
large data with WebGL. However, Stardust only focuses
on rendering and provides no support for GPU-based data
transformations.

While high-level visualization libraries (e.g., D3 and
Vega) with declarative grammar cannot provide high perfor-
mance for big data applications, low-level graphics libraries
(e.g., WebGL) lack efficiency for designing interactive visu-
alizations. We combine declarative visualization grammar
and GPU computing in P4 to provide a high-performance
toolkit for building information visualization systems.

2.2 High-Performance Visualization Techniques

To build high-performance systems for interactive analysis
and exploration of big data, many methods have been devel-
oped to improve system performance. Data reduction meth-
ods, such as filtering [22], sampling [23], and data cubes [24],
[25], are commonly used for analyzing large datasets. These
methods require a priori knowledge of the dataset and may
diminish opportunities for insight and knowledge discovery
in data exploration. In addition, distributed systems and
cloud computing can be employed for processing large
datasets. Commercial products such as Spotfire [26] and
Tableau [27] push data queries and transformations to cloud
computing infrastructures to support interactive visualiza-
tion. However, cloud computing causes overhead due to
data transfer over the network, and it requires additional
cost to the users. Especially for exploratory visual analysis,
exchanging a large amount of data is often needed between
server-side data processing and client-side rendering.

Other techniques can be used to hide system latency to
support interactive performance. Multithreading and paral-
lel processing in modern CPUs can be exploited to improve
the performance of both data transformation and visual-
ization [8], [28]. In addition, in-memory data caching [25],
[29] can be used to cache data in system memory, avoid-
ing the round trip to databases for every user interaction.
For datasets that cannot fit into system memory, incre-
mental visualization [30] can be applied to progressively
visualize large data. P4 adapts both parallel processing

3

and in-memory data caching techniques to leverage GPU
computing for interactive visualization. Instead of caching
data in system memory, P4 caches and manages data in
GPU memory for parallel processing, similarly to image-
based visualization techniques [31] that express data in pixel
space.

Many methods leverage GPU computing to improve
system performance. Fekete et al. [32] used GPU-based
rendering techniques to improve the performance for visual-
izing a million items in treemaps and scatter plots. Govidara
et al. [33] leveraged the graphics pipeline in GPUs for im-
plementing common database operations. Hurter et al. [34]
used GPU fragment shader prorgrams to visualize large sets
of aircraft trajectories and support interactive queries. The
imMens [35] system stores precomputed multidimensional
data tiles as textures in GPU memory and use fragment
shader programs for data filtering to support brushing and
linking interactions between histograms and 2D heatmaps.
These methods provided a basis for P4 to leverage GPU
computing via shader programs for designing interactive
information visualizations. To allow declarative grammar to
be used with GPU computing, we combine techniques for
GPU runtime code generation [36], [37], [38], [39] and data-
parallel primitives [40] to create GPU programs based on
user specifications.

3 DESIGN

P4 is designed to make processing and visualizing large
multidimensional data fast and easy. Figure 1 illustrates
P4s architecture, which is constructed based on our system,
data, and execution model designs.

3.1 System Model
The system model of P4 has the four primary components:
1) a translator for translating the JSON specifications into
JavaScript function calls; 2) an API for JavaScript function
calls; 3) a generator for converting user specifications into
GPU programs at runtime; and 4) a controller for managing
data input and output.

As a web-based toolkit, P4 provides a JavaScript API
for application developers to build high-performance visu-
alization systems. A portable JSON syntax is also supported
for other programming languages and systems to easily
generate design specifications. At runtime, P4 creates GPU
programs based on user specifications of the visualization
design. P4 effectively manage the execution and data flow
of the GPU programs for utilizing the GPU to transform and
visualize data.

3.2 Data Model
Internal data representation and management is the founda-
tion of a visualization library. P4 uses a unified data model
for representing multidimensional data in GPU memory.
To efficiently access data in GPU memory, data is stored
in column major order, where values of the same data di-
mension are adjacent to each other. This unified data model
is used for input and output of all data transformation
and visualization operations to ensure seamless interoper-
ability between each operation. For example, the result of

API

JSON
Specification

JavaScript
Function Calls

OR

I/O & Control
Logics

Execution & Data Flow

Data Parallel Primitives

P4 Runtime

Translator

Runtime GPU
Code Generator

Structured
Data

Device Memory

GPU

GPU ProgramsGPU API (WebGL)

Visualization Design

Fig. 1: P4 architecture and workflow.

data transformations can be directly mapped to different
visual encoding channels for visualization, The data model
supports both numerical and categorical data types. By
default, a single-precision floating-point format is used for
numerical attributes. For categorical attributes, P4 assigns
integers to represent nominal categorical values, because it
is easier and more efficient to manage integers than strings
in GPU programs. Metadata, such as minimum and maxi-
mum values of each data attributes, is also stored in GPU
memory for supporting operations such as normalization
and aggregation.

3.3 Execution Model
A P4 program specified as a pipeline that contains a data
schema and a set of operations for transformation and
visualization. When executing a pipeline, P4 transparently
parallelizes all the specified data transformation and vi-
sualization operations to effectively run on the GPU. The
operations are executed by the user-specified order, where
the output of the previous operation becomes the input of
the next one. Using our data model, P4 stores and manages
all data in the GPU memory and performs all operations
within the GPU, such that no data transfer between the CPU
and the GPU is required within a P4 pipeline.

4 PROGRAMMING INTERFACE

P4’s programming interface provides a set of customizable
operations for common data transformations, visual encod-
ings, and interactions in information visualization. These
operations can be performed on multiple data attributes
with customizable operands. In this section, all the examples
for presenting P4’s programming interface use a dataset that
contains 200,000 records of babies born in 2015 and their
parents, which is part of the publicly-available datasets from
U.S. National Center for Health Statistics. Figure 2 shows an
example pipeline for using P4’s JavaScript API to process
a dataset and visualize the result using a bar chart. To
use P4’s data model for managing data in GPU memory,
data types for all data attributes need to be first specified
in a pipeline. P4’s declarative grammar also allows users

4

var pipeline = P4.pipeline().data({
 method: "http",
 path: "data/Natality.csv",
 attributes : {
 BabyWeight: "float",
 BabyGender: "string",
 MotherAge : "int",
 ….,
 FatherAge : "int"
 }
});

pipeline
.derive({
 AgeDifference: function(d) {
 return d.FatherAge - d.MotherAge;
 }
})
.match({
 AgeDifference: [-10, 10]
})
.aggregate({
 $group: "AgeDifference",
 $collect: {
 BabyCount: { $count: "*" },
 AvgBabyWeight: { $avg: "BabyWeight" }
 }
})
.visualize({
 mark: "bar",
 x: "AgeDifference",
 y: "BabyCount",
 color: {
 field: “AvgBabyWeight”,
 scheme: “viridis”
 }
})

AgeDifference

B
ab
yC

ou
nt

Fig. 2: An example for using P4’s JavaScript API to perform
analytical processing (deriving new variable, filtering, and
aggregation) and visualize the analysis result as a bar chart.

{
 “data”: {
 “source”: {...},
 “scheme”: {
 "BabyWeight" : "float",
 "BabyGender" : "string",
 "MotherAge" : "int",
 …,
 "FatherAge" : "int"
 },
 "operations": [
 { "$match": {“MotherAge”: [15, 46]} },
 {
 "$aggregate": {
 “$bin”: {"MotherAge": 6},
 “$collect”: {“Babies”: {“$count“: "*"}}
 }
 },

 {
 "$visualize": {
 “id”: “chart”,
 “mark”: “bar”,
 “x”: "MotherAge",
 “y”: "Babies",
 “color”: “steelblue”
 }
 },

 {
 “$interact”: {
 “event”: “click”, “from”: “chart”,
 “response”: {
 “chart”: {
 “selected”: {“color”: “orange”}
 }
 }
 }
],
 “views”: [
 {“id”: “chart”, “width”: 600, “height”: 400}
]
}

Source Data

Analytical
Abstraction

Visualization
Abstraction

Visual Mapping

Data
Transformation

View
Transformation

Interaction

InfoVis Reference Model P4 Declarative Grammar

View

Fig. 3: An example showing P4’s JSON syntax for designing
interactive visualization, which follows the InfoVis Refer-
ence Model with separated specification for data transfor-
mation, visual mapping, and interaction.

to design interactive visualizations based on the InfoVis
Reference Model [1], [41]. Figure 3 shows the declarative
specification of a P4 pipeline in the JSON syntax for generat-
ing a histogram with a simple click interaction.

4.1 Data Transformation
To effectively specify data transformations, P4’s declarative
grammar uses a syntax similar to the JSONiq query lan-
guage [42] and NoSQL document-oriented database [43].
Three operations for data transformations are provided:

Derive - calculate new values from existing attributes
using user-defined logics.

Match - keep data records that meet all the conditions
specified for the selected attributes.

Aggregate - group or bin data based on the specified
attribute(s) and statistical methods.

.data({...})

.match({
 MotherAge: [12, 50],
 FatherAge: [12, 50]
})
.aggregate: ({
 $group: ["FatherAge", "MotherAge"],
 $collect: {
 Babies: { $count: "*" }
 }
})
.visualize({
 mark: "rect",
 x: "FatherAge",
 y: "MotherAge",
 color: "Babies"
})

Fig. 4: Specification of a 2D heatmap visualization using the
result from filtering and aggregation.

{
 "$visualize": {
 "mark": "line",
 "color": "steelblue",
 "opacity": 0.1,
 "y": [
 "BabyWeight",
 "MotherWeight",
 "MotherWgtGain",
 "MotherHeight"
],
 "brush": {
 "unselected": {
 "color": "lightgrey"
 }
 }
 }
}

Fig. 5: Visualization specification of a parallel coordinates
plot.

These operations can be used together in any arbitrary
order for data querying and analytical processing. In the
example shown in Figure 2, Derive is used to calculate the
age difference between each baby’s parents. This newly
derived attribute is used in the next Match to filter out
the data records with parents’ age difference larger than 10
years. The matched data records are then grouped by the
age differences to obtain the associated counts of babies and
their average birth weights. The analysis result is shown in
a bar chart for providing insights to the correlation of parent
age difference to natality and the health of newborn babies
(based on average birth weight).

As shown in the example in Figure 3, binning is used for
numerical attributes instead of grouping in aggregation. The
result is a histogram with 6 bins showing the baby counts
based on the mother’s age. In addition, two attributes can be
used to group the data in aggregation as shown in Figure 4.
The aggregation result can be visualized as a 2D heatmap for
analyzing the natality respecting to the age of the parents.

4.2 Visual Mapping

The Visualize operation in the P4 grammar allows data
attributes or transformation results to be easily mapped to
visual encoding channels: color, opacity, width, height, and
position x and y based on Cartesian coordinates. Currently,
three types of visual marks are supported: circle, line, and
rectangle. In addition, P4 allows the visual encoding of
position x and y to be specified as an array of data attributes.
This makes the GPU program to use an interleaved data
fetching operation based on the order of the specified data
attributes. For example, if we specify the mark to be line
and position y to be a list of data attributes, the result is
a Parallel Coordinates visualization shown in Figure 5. By
default, linear scales are used for all the visual encodings.
Power and log scales are allowed, and custom mapping can
also be defined by providing a formula.

5

vis.config({
 views: [
 {
 id: "chart1",
 offset: [0, 0]
 width: 360, height: 360
 },
 {
 id: "chart2",
 offset: [360, 0]
 width: 360, height: 360
 }
]
})
.interact({
 event: “brush”,
 from: “chart1”,
 response: {
 chart1: {
 unselected: {
 color: “lightgrey”
 }
 },
 chart2: {
 selected: {
 color: “orange”
 }
 }
 }
})

P4.pipeline()
.data({
 method: "http", path: "data/Natality.csv",
 scheme: {BabyWeight: "float", BabyGender: "string", MotherAge: "int", ….,}
})
.aggregate({
 $group: "MotherEdu", $collect: { Babies: {"$count": "*"} }
})
.visualize({
 id: "chart1", mark: "bar", color: "steelblue",
 y: "MotherEdu", width: "Babies"
})
.reset()
.visualize({
 id: "chart2", mark: "circle", color: "orange", opacity: “auto”,
 x: "MotherWeight", y: "BabyWeight"
})
.views([
 { id: "chart1", offset: [0, 0], width: 360, height: 360 },
 { id: "chart2", offset: [360, 0], width: 360, height: 360 }
])
.interact({
 event: “brush”, from: “chart1”,
 response: {
 chart1: { selected: { color: “orange” } },
 chart2: { unselected: { color: “gray” } }
 }
})

event: “brush”, from: “chart1”,

Fig. 6: Specification of interaction for brushing a scatter plot
to see the corresponding data highlighted in the bar chart.

4.3 Interaction
P4’s declarative grammar allows a high-level specification
of interaction design that covers a set of common tasks for
direct manipulations of visualization. As shown in Figure 3,
an interaction is specified as a pair of event and response, in
which the event can be a click, hover, brush, zoom, or pan
on any one of the visualization specified in the same pipeline.
The response is specified as how each visualization (includ-
ing the one that triggered the event) in the pipeline reacts
to an event by changing its visual encoding. As an event
is triggered, the associated data attributes and domains in
the visualization are selected. For example, clicking on a
bar chart selects the associated data subset, and brushing
a scatter plot selects the data points projected within the
brushed area. When specifying the response to an event,
changes in the visual encoding for each visualization can be
specified for both the selected or unselected portion of the
data.

Figure 6 shows an example for specifying a brush in-
teraction for the scatter plot, which changes the visual
encoding in both a scatter plot and bar chart to highlight
(in orange color) the brushed data. To keep the design
specification simple when only one visualization is in the
pipeline, the interaction can be embedded in the specifica-
tion of visual mapping, as shown in Figure 5 (see ”brush”).

4.4 Control Flow
P4 provides control flow operations for managing complex
work flows. In a P4 pipeline, intermediate results between
operations are not saved in the GPU memory by default
because this saves GPU memory for processing large data.
A Register operation is provided for saving the states of a

Fig. 7: Scatter plots with 200,000 dots: WebGL alpha blend-
ing (left), P4 opacity adjustment (center), and data binning
technique (right) used in Liu et al. [35].

Fig. 8: Parallel coordinates plots with 200,000 lines: WebGL
alpha blending (left), P4 opacity adjustment (center) , and
P4 color mapping (right).

pipeline and caching intermediate results of data transfor-
mations. A Resume operation is provided for changing the
current state and data input to the registered settings and
values. As shown in Figure 6, the Reset operation (red line)
changes the input of the second Visualize operation to use
the original raw data, instead of the output of the aggre-
gation. This is particularly useful for designing customized
interactions that involve a set of data transformations and
change the visualizations to show the updated results. In
addition, a Export operation can be used to export the data
processing results as JavaScript arrays or JSON to other
libraries.

4.5 Perception Enhancement
Plotting a large number of marks often results in a visu-
alization full of clutter. P4 provides an effective method
to help better bring out patterns and trends in plots with
large number of visual marks. The method is based on the
perception enhancement technique used in Liu et al. [35],
which maps data values or aggregation results to opacity.
In P4, we modify this technique to reduce visual cluttering
by adjusting either the opacity or color according to the nor-
malized density and spatial distribution of visual marks. We
first use the GPU to process all the pixels in the visualization
to obtain the normalized density, and then we adjust the
opacity or color based on the following formula:

α̂ = (1− αmin)(
ρ

ρmax
)γ + αmin (1)

Here ρmax denotes the maximum number of visual marks
overlapped in the entire view, and ρ denotes the number of

6

visual marks on the current pixel. As cubic roots can better
approximate perceptual linearity [44], we set γ = 1/3 by
default. Referring to prior experiments [45] on determining
opacity for perception, the default value for αmin is set to
0.1 for clearly showing the pixels with minimum density.
Figure 7 compares three different techniques for enhancing
perception on scatter plots. As we can see, the alpha blend-
ing used by OpenGL or WebGL cannot reveal hot spots,
and the data space technique based on data binning results
in higher uncertainty. In P4’s programming interface, set-
ting opacity to ”auto” applies our perception enhancement
technique to the visualization. Another advantage of our
view space perception enhancement technique is that it can
be seamlessly applied to different type of visualizations.
Figure 8 compares alpha blending to P4’s techniques for en-
hancing perception on parallel coordinates plots. In addition
to opacity, we can also use color to enhance the perception
of cluttering visualizations.

5 PARALLEL PROCESSING FRAMEWORK

Most of the data transformations and visualization op-
erations discussed in Section 4 are conceptually straight-
forward to implement. However, the complexity of GPU
programming and the flexibility needed by declarative spec-
ifications make it challenging. Implementing each of the
operations independently using ad-hoc methods requires
significant programming effort. In addition, making these
operations work effectively with one another is crucial to
interactive performance. P4’s parallel processing framework
is designed to overcome these challenges. To support both
high performance and flexibility, we combine the techniques
of data-parallel primitives and runtime GPU code genera-
tion.

5.1 Data-Parallel Primitives
From our experience in developing interactive visualization
applications, we have realized that most of the operations
needed by information visualization, including both data
transformation and visualization, can be implemented by
functional programming primitives - map, filter, and reduce.
Consequently, making these functions as data-parallel prim-
itives for executing efficiently on the GPU can provide effec-
tive building blocks for implementing all the operations. In
addition, an effective way for fetching data to the GPU’s
processing cores is needed, since P4 packages and stores
data in GPU memory. The P4 framework currently has four
data-parallel primitives:

Fetch is essential for each GPU program to retrieve the
corresponding data records for parallel processing. Based on
P4’s storage mechanism and data attribute IDs, it calculates
the data location in GPU memory for fetching data.

Map is particularly useful to compute intermediate val-
ues needed by operations. The intermediate values can be
the derived data values based on user-defined logics or the
memory location for storing the output values.

Filter provides a way for a GPU program to select data
according to the specific criteria or condition. Instead of
discarding the data after retrieving from GPU memory, it
also reduces memory bandwidth by preventing unwanted
data to be fetched.

h

h x j

A0

A1

Aj-1

w

.

.

.

Packaged Data

Metadata
[A0

min , A0
max],

[A1
min , A1

max],
 …,
[Aj-1

min , Aj-1
max]

Filter Result
[1,0,1,1,0,0,0,1,1, …]

w

Fetch Map ReduceDerive:

Match:

Aggregate:

Visualize:

Interact:

Fetch Filter

Fetch Map Reduce

Fetch Map Reduce

Map Filter

Map

(a) Parallel Processing Framework (b) Data Model

Fig. 9: P4’s parallel processing framework(a) and data model
(b).

Reduce allows a GPU program to process an array of
data values in parallel to produce a single output value us-
ing a specific statistical method, such as counting, summing,
or averaging.

These data-parallel primitives can be combined to con-
struct different algorithms or high-level operations. Instead
of making each data parallel primitive performs a fixed unit
task, we use runtime GPU code generation to define the task
based on the operation and user-defined logics.

5.2 Runtime GPU Code Generation
P4’s declarative grammar provides flexibility to apply user-
defined logics for data transformations and visual encod-
ings at runtime. As in the example shown in Figure 2,
the new attribute ”AgeDifference” is derived from existing
attributes with user-defined logics, and this new attribute
can be used for other operations in the rest of the pipeline.
To support such flexibility while parallelizing computations
on the GPU, we adapt runtime GPU code generation tech-
niques for embedding the user-defined logics in the GPU
program. For each data transformation and visualization
operation, we first construct the work flow and execu-
tion pattern using the data-parallel primitives. A default
task is defined for each primitive, but the runtime GPU
code generator can redefine the task to embed the user-
defined logics if provided in the design specification. This
methodology becomes clearer when we discuss our WebGL
implementation in Section 6.

5.3 Parallel Transformation and Visualization
In P4’s parallel processing framework, data transformation
and visualization operations are constructed by different
combinations of the data-parallel primitives. Figure 9(a)
illustrates how each operation discussed in Section 4 are
constructed.

Derive takes a formula or a function for creating a new
data attribute using user-defined logics with existing data
attributes. Fetch is used to obtain the values for the existing
data attributes, and Map is used to derive the new values
using the user-defined logics. Since P4 needs to compute
the metadata (e.g., minimum and maximum values) for the
new data, all the derived data values for a new attribute
are assigned with the same key for Reduce to obtain the
metadata.

7

Match takes a set of criteria to filter data. By parsing
these criteria, Fetch is used to obtain the values of specified
data attributes, and Filter is used to determine whether or
not the values meet the criteria.

Aggregate takes one or more data attributes as the
keys to group data and then processes the data in each
group using the specified reduction methods. By parsing
the specification for Aggregate, P4 sets the data attributes
for Fetch and uses Map for assigning each data value to the
corresponding group. Finally, Reduce is used to obtain the
reduction results in each group.

Visualize takes a set of visual encodings for mapping
data attributes to visual channels. Based on the visual
encoding, the encoded data attributes are used for Fetch.
By default, Map is used for interpolating the positions and
other encodings of the visual marks based on data values.
If a user-defined mapping is provided, Map is changed at
runtime. For perception enhancement, Reduce is used to
determine the minimum and maximum density values in
the visualization, and another Map is used to calculate the
output value for each pixel based on Equation 1.

Interact takes an event-response pair to change the vi-
sual encodings for the selected portion of data rendered on a
visualization. It employs the same combination of the data-
parallel primitives used by Visualize with an extra Map and a
Filter. The extra Map obtains the extents of the data domains
selected by the interaction. The Filter uses these extents to
mark the data for changing the visual encoding according
to the response of the interaction.

6 IMPLEMENTATION

Since P4 is designed to be a web-based toolkit, our imple-
mentation is based on WebGL 1.0, the only standardized
GPU API currently available in most modern web browsers.
Here we describe how P4 is implemented based on our
parallel processing framework to enable GPU-based data
transformation and visualization.

6.1 Data Management

P4 packs data as 2D WebGL textures for storing in GPU
memory. Floating-point textures are used, which can sup-
port 24-bit precision with values ranging from 2−127 to 2127.
To pack multidimensional data in 2D textures, we use the
data model of column arrays to arrange data based on the
attribute orders, as shown Figure 9(b). Each pixel in a 2D
texture stores a data value. A 2D texture is divided vertically
into partitions with w width and h height, with each parti-
tion allocating for a data attribute Ai. Since a texture size of
8, 1922 is typically supported in modern graphic cards, we
set the default value of w to be 8,192. For data size exceed-
ing 8, 1922, the data are partitioned into multiple textures.
The metadata of the minimum and maximum values for
all data attributes are stored in GPU memory as WebGL
Uniform Buffer objects. For data transformation operations,
the results are written to the textures attached to the off-
screen frame buffer, which can be used as input for the
next operations. P4 manages the pointers to the input and
output texture objects to ensure the correct data flows. As
all the inputs and outputs of data transformation operations

use a unified data model, the visualization operations can
seamlessly inter-operate with the data transformation oper-
ations, leveraging the high memory bandwidth and massive
computing power of the GPU to efficiently visualize a large
number of visual marks.

6.2 Visualization Rendering
To generate visualizations on web browsers, P4 uses WebGL
to render visual marks on HTML5 Canvas elements. Since
the axes and labels do not need parallel rendering due to
the small number of visual items, they are rendered as SVG
elements. Therefore, a copy of the metadata is stored in
the system memory, including the minimum and maximum
values of the numerical attributes for rendering of the axes
and labels in SVG. Since integers are used to represent
categorical data (strings) in GPU memory, the metadata
stored in the system memory also contains all the references
to categorical attributes, where axes and labels can reference
the metadata to show the string values of the categorical
attributes. In addition, multiple visualizations share the
same data source and data transformation results without
duplicates. Ideally each visualization should be rendered
to its own Canvas. However, resource sharing between
different WebGL contexts and canvases is not supported in
the current version of WebGL. Since each P4 pipeline can only
be initialized with one data source, all visualizations for
this data source and the results from data transformations
are rendered to the same WebGL Canvas. P4 partitions the
Canvas based on the view configuration provided by the
users to render multiple visualizations for the same dataset.
For multiple visualizations for multiple datasets, multiple
P4 pipelines can be used.

6.3 GPU Shader Programs
P4 uses WebGL shader programs for both data processing
and rendering. We leverage the WebGL pipeline to im-
plement our parallel processing framework with the four
data-parallel primitives discussed in Section 5. For Fetch,
we take advantage of the efficient mechanism provided to
the shader for accessing textures. For Map, we leverage the
vertex shader for computing intermediate results, and use
the fragment shader to write the results to corresponding
locations. For Filter, we use the vertex shader to check if
the data record matches the specified criteria and use the
fragment shader to save the filter result. For Reduce, we
leverage the capability of the blending unit to obtain the
count, sum, maximum, and minimum values for each pixel
on the output framebuffer. We can also obtain the average
and variance using two passes, in which we get the count
and sum in the first pass.

Figure 10 illustrates how P4 generates the GPU codes
from user specifications for aggregating and visualizing
data via the WebGL pipeline. The aggregation workflow (a)
is composed of three data-parallel primitives (Fetch, Map,
and Reduce) for processing the group-by transformation (b).
At runtime, P4 generates GPU code (c) for the aggregation.
The vertex shader program (c1) performs Fetch and Map,
and the fragment shader program (c2) writes the fetched
values to the corresponding output location based on the
result of Map. To obtain the counts and sums for calculating

8

Blender

Offscreen FBO

Fragment Shader

Vertex Shader

Views

Uniforms

Textures

GPU Memory

GPU Cores

varying float value;
uniform int p4_aggr_key;
uniform int p4_field_id;
….
float p4_dpp_fetch(int key) {...};
float p4_dpp_map(int key) {...};
….
void main() {
 int gkey = int(p4_dpp_fetch(p4_aggr_key));
 value = p4_dpp_fetch(p4_field_id);
 float ox = p4_dpp_map(p4_aggr_key);
 gl_Position = vec4(ox*2.-1., 0., 0., 1.);
}

….
void main() {
 ….
 gl_FragColor = vec4(0., 0., 1., value);
}

var gl = aggr.ctx;
gl.enable(gl.BLEND);
gl.blendFunc(gl.ONE, gl.ONE);
gl.blendEquation(reduce_method); //gl.ADD

gl.drawArraysInstanced(gl.POINTS,….);

Fetch

Map

Reduce

varying vec3 color;
varying float opacity;
uniform int encodings[6];
uniform int mark;
….
float p4_dpp_fetch(int key) {...};
float p4_dpp_map(int key) {...};
….
void main() {
 float x, y, width, height;
 vec2 pos;
 x = p4_dpp_map(p4_dpp_fetch(encodings[0]));
 y = p4_dpp_map(p4_dpp_fetch(encodings[1]));
 color = p4_dpp_map(p4_dpp_fetch(encodings[2]));
 opacity = p4_dpp_map(p4_dpp_fetch(encodings[3]));
 width = p4_dpp_map(p4_dpp_fetch(encodings[4]));
 height = p4_dpp_map(p4_dpp_fetch(encodings[5]));
 gl_Position = p4_mark_pos(mark,x,y,width,height);
}

….
void main() {
 ….
 vec4 v = p4_mark_rgba(mark, color, opacity);
 gl_FragColor = vec4(v);
}

if ([“circle”,“square”,“dot”].indexOf(mark)>=0)
 gl.drawArraysInstanced(gl.POINTS,….);
else if (mark == “line”)
 gl.drawArraysInstanced(gl.LINE_STRIP,….);
else
 gl.drawArraysInstanced(gl.TRIANGLES,….);

var aggr = P4.pipeline().data(...)
 .aggregate({
 $group: "MotherRace",
 $collect: {
 AvgWeight: {
 $avg: "BabyWeight"
 }
 }
})

(a) Aggregation Workflow

Texture

Vertex
Space

Pixel
Space

Frame
Buffer

(c) Generated GPU Code for Aggregation (d) WebGL Pipeline (e) Generated GPU Code for Visualization

c1

c2

c3

c4

e1

e2

e3

(b) Aggregation Query

Fig. 10: Examples of runtime GPU code generation. The aggregation Workflow (a) for the, (aggregation query (b) generates
the GPU codes (c) to effectively utilize the WebGL pipeline for grouping data and obtaining the average values in each
group. In a similar way, the generated GPU code for visualization (d) renders visual marks based the visual encodings.

the average values with Reduce, the WebGL blending (c3)
is set to use addition. When the WebGL draw call (c4) is
executed, the vertex and fragment shaders and blender are
utilized to write the aggregation result to the framebuffer.
For the GPU code generated for visualization (e), the WebGL
pipeline is utilized in a similar way. The vertex shader
program (e1) uses Map for obtaining the normalized values
based on the visual encodings and sets the position of visual
marks. The fragment shader program (e2) sets the color,
opacity, and shape of the visual marks. Base on the specified
type of visual marks, P4 changes the visualization operation
to use the corresponding WebGL draw call (e3).

In addition to being the building blocks for constructing
different operations, data-parallel primitives also make run-
time code generation easier. Figure 11 shows an example for
generating the vertex shader program for a Derive operation.
The user-defined logics for deriving the new data attribute
are used to define the function for Map in the vertex shader
program. When generating GPU codes using data parallel
primitives, the main function in the shader program does
not need to be changed, because the sub-functions of the
data parallel primitives can be changed based on user spec-
ifications. Similarly in Figure 12, the user-defined criteria
for Match is used to define the function for Filter in the
vertex shader program. In this example, the criteria for
Match depends on a categorical data attribute. Therefore,
the indexes for the categorical data is uploaded to the GPU
using WebGL Uniforms (Figure 12b).

7 PERFORMANCE BENCHMARKS

To evaluate the performance of P4 for both data transfor-
mation and visualization, we compare P4 to four existing
state-of-the-art libraries (Table 1). To evaluate portability, we
benchmark P4 using four different grades of GPUs (Table 2).

“$derive”: {
 "MotherBMI": “MotherWeight * 0.45 / pow(MotherHeight * 0.0254, 2)”
}

varying float derived_value;
….
float p4_dpp_map() {
 return p4_dpp_fetch(4) * 0.45 / pow(p4_dpp_fetch(5) * 0.0254, 2.);
}

void main() {
 derived_value = p4_dpp_map();
 gl_Position = vec4(p4_idx, p4_idy, 0., 1.);
}

(a) Query

(b) Vertex Shader

Fig. 11: P4’s runtime GPU code generator embeds the user-
defined logics of the Derive operation in the vertex shader
(b).

….
var ids = ctx.getIndexes(
 “MotherRace”,
 [“Asian”, “Black”, “White”]
);
ctx.uniform.match_in = ids;
gl.drawArraysInstanced(gl.POINTS,….);

“$match”: {
 "MotherRace": {
 “$in”: [“Asian”,“Black”,“White”]
 }
}

varying float filter_result;
uniform float match_in[3];
….
float p4_dpp_filter(float value) {
 float res = 0.0;
 for(int i = 0; i < 3; i++) {
 if(value == match_in[i]) res = 1.0;
 }
 return res;
}
void main() {
 float value = p4_dpp_fetch(3); //fetch by id
 filter_result = p4_dpp_filter(value);
 gl_Position = vec4(p4_idx, p4_idy, 0., 1.);
}

(a) Query

(b) WebGL API Call

(c) Vertex Shader

Fig. 12: Based on the user-defined criteria (a) for the Match
operation, P4’s runtime GPU code generator sets the criteria
as WebGL uniforms (b) and define these criteria for the Filter
primitive in the vertex shader(c).

7.1 Benchmark Methods

Modern web browsers commonly use asynchronous, non-
blocking API calls to access the GPU. Since the execution of
GPU-based computations is managed by WebGL, a method
is needed to synchronize between CPU and GPU in order
measure the actual execution time of a GPU program. To do
this, we intentionally read a random byte of the result from
the GPU memory after each operation, which ensures the
GPU program has completed writing the result. Similarly

9

(a) Filter out data (b) Derive values (c) Get high-level patterns
D3 Lodash Vega P4

Number of Data Records
Fig. 13: Average time for P4 and other three stat-of-the-art libraries to perform three different data transformations.

(a) Match (b) Derive (c) Aggregate
AMD HD7970 Intel HD520 Nvidia GTX940m Nvidia GTXTitan

Number of Data Records
Fig. 14: Average time for P4 running on four different grades of GPU to perform three different data transformations.

Library Version D.T. Vis. Website
D3 [4] 3.5.17 Yes Yes d3js.org
Vega [6] 3.0.2 Yes Yes vega.github.io/vega/
Lodash 4.17.4 Yes No lodash.com
Stardust [21] 0.1.1 No Yes stardustjs.github.io

TABLE 1: P4 is compared to these four libraries for data
transformation (D.T.) and visualization (Vis.) performance.

Vendor Model Cores GPU Clock Memory
Intel HD520 192 1050 MHz 1GB DDR3
Nvidia GTX940m 384 1070 MHz 2GB DDR3
AMD HD7970 2048 925 MHz 3GB DDR5
Nvidia GTXTitan 2688 836 MHz 6GB DDR5

TABLE 2: P4 is evaluated on these four graphics processors.

for WebGL-based visualizations, we randomly read a pixel
from the view port after rendering. Normally, P4 does not
transfer the result from the GPU memory to the CPU side
after completing an operation, but this provides a useful
bound for evaluating the performance of P4.

Each benchmark is tested with 10 trials per record size,
with the size varying from 16K to 16M records with each
record having four data attributes. All our benchmarks
were performed in Google Chrome 61.0.3163.100 (64-bit).
When comparing P4 against other libraries, we ran our
benchmarks on a desktop computer with a quad-core 3.6
GHz Intel i7-4790 CPU and 32 GB RAM. The computer has a
PCI Express Nvidia GTX Titan graphic card with 6GB video
RAM.

7.2 Data Transformation Performance

For data transformation, we compared P4 against D3, Vega,
and Lodash. D3 and Vega are two popular libraries for infor-
mation visualization. D3 provides a set of helper functions
that can be used for implementing common data trans-

formations. Vega explicitly supports data transformations
where users can specify operations using its declarative
grammar. Lodash is a widely used data processing library
for developing web-based applications, including informa-
tion visualization and visual analytics systems.

To compare performance, we selected three data trans-
formation tasks from Heer and Shneiderman’s taxonomy
of interactive dynamics for visual analysis [46]: (1) filter out
data to focus on relevant items, (2) derive values from source
data, and (3) navigate to examine high-level patterns. For
D3, Vega, and Lodash, we follow the documentation and ex-
amples in their websites to implement these three tasks. For
P4, these three tasks can be easily implemented using the
Match, Derive, and Aggregate operations, respectively. The
results in Figure 13 show the performance of P4 compared
to D3, Vega, and Lodash. P4 performs significantly faster,
especially for data size larger than one million records,
where P4 is at least 10X faster than the other three libraries.
Due to browser time limitation, D3, Vega, and Loadash
cannot handle data with more than 4M records, while P4
can handle up to 16M records. For filtering out data, the
performance of P4 is two order of magnitude higher. For
deriving new values, Lodash is slightly faster for 128K data
records or less, but P4 is much faster for larger data sizes.
For showing high-level patterns (aggregation), P4 performs
10X to 100X faster as data size increases.

Figure 14 shows P4’s performance running on four dif-
ferent grades of GPUs. The results show that P4 can achieve
higher performance on more powerful GPUs. Even for inte-
grated GPUs inside the CPU chip (Intel HD520) and GPUs
for mobiles and laptops (Nvidia GTX940m), P4 performs
5X to 10X faster than other libraries for large data sizes.
For Match and Aggregate, P4’s performance is relatively
constant for small data sizes. The computation time starts to

10

 I
ni

tia
liz

at
io

n
Ti

m
e

(m
s)

Number of Data Records

D3 StardustVega P4
 V

is
ua

liz
at

io
n

Ti
m

e
(m

s)
Scatter Plot Parallel Coordinates

Fig. 15: Average initialization and frame time for P4 and
other three stat-of-the-art visualization libraries to visualize
scatter plots and parallel coordinates plots.

increase at particularly larger data sizes, depending on the
computing power of the GPUs and the performance of the
hosted system. With small data sizes, the overhead caused
by P4 at runtime dominates the computation time. As data
size increases, the computation time for data processing
becomes higher and reduce the impact of the overhead on
the overall performance. From Derive, we noticed that the
performance numbers on different GPUs are similar, where
more powerful GPUs (e.g., AMD HD7970 and Nvidia GTX
Titan) did not have significant performance gain. This is
because Derive needs to allocate extra GPU memory for
storing the derived values, which results in a large overhead
to the performance. For optimizing the performance of
Derive, we can preallocate extra GPU memory to hide the
latency. It is also possible to let users decide whether preal-
location is used or not for trading memory space for better
performance. We plan to further improve the performance
of Derive along with other performance optimizations in our
future work.

7.3 Visualization Performance
We compare the performance of P4, D3, Vega, and Stardust
for visualizing scatter plots and parallel coordinates plots.
While D3 is based on SVG, Stardust provides a similar API
to D3 but use WebGL for rendering. Vega can use both SVG
and Canvas for rendering, but it is measured to be more
efficient when rendering to Canvas. Therefore, we configure
Vega to use Canvas for rendering in this benchmark.

Figure 15 shows the benchmarking results of D3, Vega,
Stardust, and P4 for visualizing scatter plots and parallel
coordinates plots. For each visualization, we measure the
initialization time and average frame time. Due to memory
allocation or browser time limit, D3, Vega, and Stardust
cannot visualize data with more than 2M records for scatter
plot, and they cannot visualize data with more than 512K for
parallel coordinates plot. Only P4 can visualize both parallel
coordinates and scatter plot for data with 16M data records
in this benchmark.

P4 has the same initialization for both parallel coordi-
nates and scatter plots because it stores all the data dimen-
sions in GPU memory, In addition, both P4 and Stardust

Number of Data Records

 V
is

ua
liz

at
io

n
Ti

m
e

(m
s)

Scatter Plot Parallel Coordinates
AMD HD7970 Intel HD520 Nvidia GTX940m Nvidia GTXTitan

Fig. 16: Average initialization and frame time for P4 to
visualize scatter plots and parallel coordinates plots.

need to generate and compile WebGL shaders. Therefore, D3
has the fastest initialization time since it has the least over-
head for setting up visualizations, and Vega has the slowest
initialization since it needs to parse the JSON specifications
and arrange data for supporting reactive workflow. P4 is
slower than Stardust for initializing scatter plots because P4
needs to transfer the data values for all the data attributes to
GPU memory even if only two data attributes are used for
visualization. For parallel coordinates plots, Stardust does
not provide a way to interleave different data attributes in
the shader programs like P4 does, so it requires some data
rearrangement in order to visualize the plot. As a result, P4
is faster than Stardust for initializing parallel coordinates
plots.

In P4, each pipeline only needs to be initialized once, and
initialization is not required for a change of visualization
types. Therefore, the visualization time is more important
since it is crucial to interactive performance. It is also impor-
tant to measure the actual visualization time rather than just
the rendering time. The difference between visualization
time and rendering time can be explained using the InfoVis
Reference Model in Figure 3. While the rendering time only
measures the performance of visual transformation, the vi-
sualization time measures performance of both visual map-
ping and visual transformation. P4 is about 10X faster than
Vega and Stardust and about 50X faster than D3 (Figure 15).
Both P4 and Stardust use WebGL for rendering, but their
approaches are different. P4 performs both visual mapping
and transformation in a single operation while Stardust
uses multiple passes. In addition, Stardust leverages the
vertex shader for constructing geometries (e.g., circles and
squares), while P4 uses a pixel-based approach that lever-
ages the fragment shader. As a result, P4 performs better
than Stardust when visualizing scatter plots. For parallel
coordinates, P4 can effectively interleave data dimensions
for visualizing lines based on vertices mapped to different
data attributes. This makes P4 outperform Stardust when
visualizing parallel coordinates plots.

Figure 16 compares the visualization performance of P4
running on four different GPUs. Similar to what we saw
for data transformation, P4 achieves better performance
on more powerful GPUs. Due to browser time limit, Intel
HD520 (integrated GPU) cannot visualize data with 16M
records for scatter plot nor data with more than 2M records
for parallel coordinates plots. On the other hand, Nvidia
GTX 940m cannot visualize data with 4M records or more
for parallel coordinates plots within the browser time limit.

For interactive visualization, user interactions can trigger
different data transformations and updates to the visual-

11

ization. Therefore, the time for both data transformation
and visualization directly impacts the interactive perfor-
mance. As P4 provides much better performance for both
data transformation and visualization compared to other
libraries, interactive performance can be greatly improved.

8 APPLICATIONS

We have built several visualization applications using P4
over the course of its development. Here we present three
of these applications to demonstrate P4’s applicability for
developing high-performance interactive systems.

8.1 Supercomputing Network Behavior

Supercomputing technology is essential to big data ana-
lytics and scientific discoveries. The overall efficiency of
supercomputers largely relies on the performance of the
interconnection networks. Based on P4, we have built an
interactive web-based system to support explorations of the
design space of such networks. To explore the behaviors of
supercomputers for optimizing performance, supercomput-
ing researchers typically collect data from either production
supercomputers or accurate discrete-event simulations with
sophisticated models. The data is often time-varying and
multidimensional with millions of records. With P4, such
large and complex data can be effectively visualized in
multiple coordinated views for interactive exploration.

Using our system with supercomputing researchers, we
have studied the behavior of Dragonfly [47] networks with
various network scales, routing strategies, job placement
policies, and parallel application workloads. Dragonfly net-
work is a popular choice for building modern and next-
generation supercomputers (e.g., exascale systems). While
automated techniques cannot easily be applied to design
space exploration, visual analysis techniques allows su-
percomputing researchers to apply their domain expertise
and background knowledge for interactively exploring the
network performance data and evaluating different design
choices. With the insights gained from our exploration and
analysis, we are able to develop optimization strategies
to improve the performance and efficiency of Dragonfly
networks. Our system design, visual analysis techniques,
analysis results, and optimization strategies are published
in Li et al. [48].

Figure 17 shows the user interface of the system and
illustrates how P4 is used to process and visualize temporal
statistics and individual network entities (e.g., network links
and terminals), and at the same time aggregate the selected
data and output the results to D3 for visualizing the network
structures using concentric radial layouts (Figure 17b). Since
P4 is efficient in processing and visualizing massive amount
of data items while D3 is handy for creating advanced
visualization layouts with a relatively small number of
items, using both libraries together can effectively realize
our system design. The implementation of this system
demonstrates the interoperability between P4 and other
visualization libraries. Statistical analysis results obtained
by data processing and aggregation in P4 can be exported
to another library to create customized visualizations for
providing visual summaries and overviews. However, the

Fig. 17: P4 is used to process and visualize large network
performance data. Aggregated results processed by P4 are
passed to D3 for generating a more explanatory view for
summarizing the network.

overhead of transferring a large amount of data from GPU
to CPU can impact system performance. System designers
and programmers need to be aware of this overhead and
should only export data aggregation results from P4 to other
libraries. Since the data size of aggregation results is usually
small, the overhead due to data transferring is negligible.

8.2 Large-Scale Discrete-Event Simulation
Parallel discrete-event simulations (PDES) allows scientists
to model and study complex physical phenomena. The
scalability of PDES is important to analyzing large-scale
phenomena. Collaborating with a team of PDES developers,
we have created a visual analytics system for assessing
and improving the efficiency and scalability of large-scale
PDES. The system design and the associated visual analytics
techniques are published in Ross et al. [49]. In the first
version of this system, most data processing relied on CPU-
based computations, which resulted in high system latency
which adversely affects the exploration process. To improve
interactive performance, P4 is used for data processing and
management for supporting visualizations and interactions.

Improving the scalability of large-scale PDES requires
analysis of large multivariate time-series data generated by
the PDES engine about each program parameters used for
controlling the simulation. The time-series data is collected
from two temporal perspectives: the virtual time of the sim-
ulation and the real time of the simulation program running
on a distributed computing system. As we can see from the
user interface of the system shown in Figure 18, various user
interactions are provided to analyze the PDES performance
data, including connecting the temporal statistics between
virtual and real time domains as well as selecting a subset
of data for detailed investigation. These user interactions
trigger a series of operations for transforming large amount
of data to update the visualizations, which can be imple-
mented using P4 in a straightforward way. If these data
transformations were to rely on CPU-based computations,
the system could only handle data with very low temporal
resolution. The performance provided by P4 allows explo-
ration of simulations with much higher temporal resolution
at interactive speed.

12

Fig. 18: User interactions, such as select, zoom, and connect,
are provided in our PDES visualization system [49] for
analyzing simulator performance data.

8.3 P4 Player

In parallel to the development of P4, we have created P4
Player, a web application for designing interactive visualiza-
tions using P4’s JSON syntax to explore multidimensional
datasets. The user interface of P4 Player is composed of
an editor and a visualization dashboard. The editor is for
inputting design specification via P4’s declarative grammar,
and the corresponding visualizations are displayed in the
dashboard. This facilitates a process of edit, run, and repeat
for iteratively exploring a dataset. Users can freely create
and save design specifications for different datasets. In
addition to load data from web servers, P4 Player leverages
the HTML5 File API [50] for users to load data files from
local hard disks, which does not require data uploads via
the internet. This avoids the network bandwidth being a
bottleneck for processing and visualizing large data. P4
Player also supports different file formats, including JSON,
CSV, and binary files. The implementation of P4 Player
demonstrates the interoperability between P4 and modern
web technologies. Other web applications can use a similar
approach to build high-performance systems using P4.

9 DISCUSSION

Here we discuss the trade-off between expressiveness and
performance, as well as the possible extensions and current
limitations of P4.

9.1 Expressiveness and Performance

While low-level visualization grammars with fine-grained
controls are needed for explanatory visualization, high-
level and declarative grammars with concise expressions
are more useful for exploratory visualization. By allowing
GPU computing to be used with a declarative grammar and
a concise syntax, P4 is particularly useful for exploratory
visual analysis of big data. Comparing with P4, D3 sup-
ports more visualization representations by inheriting the
expressiveness from the document object model (DOM),
while Vega and Vega-Lite provide more capabilities for
both data transformation and visualization by leveraging
the flexibility in JavaScript. However, the DOM and single-
threaded JavaScript cannot support large data visualization
applications. To provide better scalability, P4’s specialized
framework offloads both data processing and visualization
to the GPU. In P4, we only use the DOM for configuring
view positions and representing chart axes, legends, and

other meta-visualizations. This design makes implemen-
tation simple. GPU computing is only used to mitigate
performance bottlenecks, and the DOM is used for other
components that do not require GPU computing.

As P4 cannot inherit the expressiveness from the DOM
and JavaScript, we provide a declarative grammar for con-
cise specification of interactive visualization. P4 aims to
provide the same level of expressiveness and conciseness in
Vega-Lite, but our declarative grammar requires the dataset
schema (data types and attribute names) to be first specified
for ensuring efficient data management in GPU memory.
In addition, P4 strictly separates the specifications of data
transformation, visual mapping, and interaction, so each
operation can be parallelized to run on the GPU. Unlike
the syntax in D3 or Vega-Lite where the specifications of
data transformation and visual mapping are often coupled
together, P4 provides a cleaner syntax for designing infor-
mation visualization as well as tracking provenance.

The development of many visualization libraries tend
to focus ensuring expressiveness and attempt to seek per-
formance improvement later. However, the improvement
of performance is often limited in such an approach. In
the development of P4, we first built a high-performance
framework and then extend it to add more expressiveness.

9.2 Optimization and Extension

We have implemented P4 using WebGL 1.0 since it is
currently the only standardized interface to access GPU
computing in modern web browsers. As WebGL 2.0 is soon
to be available in web browsers which enables access to
more features in modern GPUs, we can relax or remove
some of the current limitations in P4 while optimizing the
performance. However, many advanced features are still not
available, such as shared GPU resources between contexts
and Compute Shader. In particular, we use the blending
operations provided by WebGL to implement the Reduce
primitive, which can only support a few metrics, such as
min, max, count, sum, and average. Although it is sufficient
to support a large set of the common operations for informa-
tion visualization, aggregation is limited to these metrics. If
Compute Shader or programmable blending is supported in
future WebGL versions, we can change the implementation
of the Reduce primitive to provide more options and flexibil-
ity for aggregation. Future parallel computing interfaces in
web browsers will also permit alternative implementations.
Beyond web-based systems, our approach of using data-
parallel primitives and runtime code generation can be
applied to standard desktop contexts. The features for the
high-level operations of data transformation and visualiza-
tion remain the same with different implementations and
underlying architectures.

In addition to optimizing performance, P4 can be easily
extended. New data-parallel primitives can be added to
P4’s parallel processing framework. New high-level oper-
ations can also be added by leveraging existing and new
data-parallel primitives. People with knowledge in GPU
programming and parallel computing can add new data
parallel primitives, and people in the field of information
visualization can add new high-level operations. This allows
researchers and developers from the fields of information

13

visualization and high-performance computing to work to-
gether for advancing data analytics and visualization tech-
nologies.

P4 should be easily adopted by application developers
and data analysts given its simplicity. Public deployment
and collecting user feedback can help us improve and ex-
tend our programming interface and declarative grammar.
We also plan to create standardization for others to write
extensions and plug-ins for P4, so the users of P4 can write
and share custom methods based on our parallel processing
framework.

9.3 Limitations and Future Work
A drawback in our approach is that the performance gain
achieved by P4 depends on the computing power of the
GPU on the underlying device. GPUs in today’s mainstream
desktop and laptop computers can achieve good speedup,
but devices with less powerful GPUs, such as smart phones
and tablet computers, might not have sufficient computing
power to handle datasets with millions of records. In ad-
dition, because P4 manages all the data in GPU memory,
the GPU memory capacity limits the data size can be han-
dled. When the data size cannot be handled by the GPU’s
computing power or memory capacity, data preprocessing
and progressive visual analytics can be used to support
interactive exploration. To allow data preprocessing in P4,
we can extend our syntax for specifying data preprocessing
when initializing a P4 pipeline. Nevertheless, similar to the
precomputed data tile method used in Immense [35], data
preprocessing limits the flexibility of data exploration and
requires users to have background knowledge about the
dataset. To support progressive processing, we can partition
the data in chunks that can fit into GPU memory, and then
we can incrementally process each chunk and update the
result and visualizations. Interactions to the visualizations
can also be supported for users to explore the intermediate
results. In addition to the GPU memory limit, the execution
time limit in web browsers should also be considered when
determining the time interval for progressively updating
visualizations. As we learned from our performance bench-
mark, very large datasets may cause the computation time
to exceed what web browsers typically allow when using
GPUs with less computing power.

Although the available operations in our current imple-
mentation can support a large set of common visualization
and exploration tasks, the expressiveness for specifying
highly customized data transformations and visualizations
is limited. For data transformation, embarrassingly paral-
lel operations can be easily added to P4, but operations
that are not embarrassingly parallel are more challenging
to implement. This requires further improvement on P4’s
framework as well as adding more advanced data-parallel
primitives. For example, a scan primitive can be added to
realize effective parallel sort. For visualization, our current
implementation only support parallel projection based on
Cartesian coordinates and a few types of visual mark. Fu-
ture extension can add support for Polar coordinates and
more types of visual mark. More complicated visualiza-
tion layouts that are not based on parallel projection (e.g.,
treemap) can also be supported by adding new visualization
operations.

10 CONCLUSION

We have introduced P4, a high-performance and flexible
toolkit for declarative design of interactive information vi-
sualization. While most existing toolkits mainly focus on
expressiveness but pay little attention to the importance of
interactive performance, we combine GPU computing and
declarative grammar in P4 to facilitate the development
of information visualizations and visual analytics systems.
We have also contributed an extensible parallel processing
framework that combines data-parallel primitives and run-
time code generation to make GPUs as flexible and efficient
accelerators for data transformations and making visualiza-
tions. Our benchmark results show that P4 is at least an or-
der of magnitude faster than the current state of the art tools
in both data transformation and visualization. In addition,
we have shown three visualization applications built with
P4 for analyzing and exploring large data. P4 is an open
source software available at https://jpkli.github.io/p4. As
we and others further extend P4’s functionality and capa-
bility, data visualization in P4 with GPU acceleration will
become an even more attractive tool for making sense of
complex information and discovering new knowledge.

ACKNOWLEDGMENTS

The authors thank Chris Ye and Min Shih for their insight
and support. This research is sponsored in part by the U.S.
National Science Foundation through grants IIS-1741536
and IIS-1528203, and the U.S. Department of Energy through
grant DESC0014917.

REFERENCES

[1] S. K. Card, J. D. Mackinlay, and B. Shneiderman, Readings in
information visualization: using vision to think. Morgan Kaufmann,
1999.

[2] S. K. Card, A. Newell, and T. P. Moran, “The psychology of
human-computer interaction,” 1983.

[3] Z. Liu and J. Heer, “The effects of interactive latency on ex-
ploratory visual analysis,” IEEE transactions on visualization and
computer graphics, vol. 20, no. 12, pp. 2122–2131, 2014.

[4] M. Bostock, V. Ogievetsky, and J. Heer, “D3: Data-Driven Docu-
ments,” IEEE Transactions on Visualization and Computer Graphics,
vol. 17, no. 12, pp. 2301–2309, 2011.

[5] H. Wickham, ggplot2: elegant graphics for data analysis. Springer,
2016.

[6] A. Satyanarayan, R. Russell, J. Hoffswell, and J. Heer, “Reactive
vega: A streaming dataflow architecture for declarative interac-
tive visualization,” IEEE transactions on visualization and computer
graphics, vol. 22, no. 1, pp. 659–668, 2016.

[7] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer,
“Vega-lite: A grammar of interactive graphics,” IEEE Transactions
on Visualization and Computer Graphics, vol. 23, no. 1, pp. 341–350,
2017.

[8] J. Heer and M. Bostock, “Declarative language design for interac-
tive visualization,” IEEE Transactions on Visualization and Computer
Graphics, vol. 16, no. 6, pp. 1149–1156, 2010.

[9] L. Wilkinson, The Grammar of Graphics. Springer-Verlag, Inc., 1999.
[10] M. Bostock and J. Heer, “Protovis: A graphical toolkit for visu-

alization,” IEEE transactions on visualization and computer graphics,
vol. 15, no. 6, 2009.

[11] M. Harris, “Gpgpu: General-purpose computation on gpus,” SIG-
GRAPH 2005 GPGPU COURSE, pp. 1–51, 2005.

[12] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.
Phillips, “Gpu computing,” Proceedings of the IEEE, vol. 96, no. 5,
pp. 879–899, 2008.

[13] M. Woo, J. Neider, T. Davis, and D. Shreiner, OpenGL programming
guide: the official guide to learning OpenGL, version 1.2. Addison-
Wesley Longman Publishing Co., Inc., 1999.

https://jpkli.github.io/p4

14

[14] Khronos. WebGL Specification. https://www.khronos.org/
webgl/. Accessed:2017-12-15.

[15] D. Shreiner, G. Sellers, J. Kessenich, and B. Licea-Kane, OpenGL
programming guide: The Official guide to learning OpenGL, version
4.3. Addison-Wesley, 2013.

[16] J. E. Stone, D. Gohara, and G. Shi, “Opencl: A parallel program-
ming standard for heterogeneous computing systems,” Computing
in science & engineering, vol. 12, no. 3, pp. 66–73, 2010.

[17] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with cuda,” in ACM SIGGRAPH 2008 classes. ACM,
2008, p. 16.

[18] N. Bell and J. Hoberock, “Thrust: A productivity-oriented library
for cuda,” GPU computing gems Jade edition, vol. 2, pp. 359–371,
2011.

[19] J. Szuppe, “Boost.compute: A parallel computing library for c++
based on opencl,” in Proceedings of the 4th International Workshop on
OpenCL. ACM, 2016, p. 15.

[20] B. McDonnel and N. Elmqvist, “Towards utilizing gpus in in-
formation visualization: A model and implementation of image-
space operations,” IEEE Transactions on Visualization and Computer
Graphics, vol. 15, no. 6, pp. 1105–1112, 2009.

[21] D. Ren, B. Lee, and T. Höllerer, “Stardust: Accessible and trans-
parent gpu support for information visualization rendering,” in
Computer Graphics Forum, vol. 36, no. 3. Wiley Online Library,
2017, pp. 179–188.

[22] C. Ahlberg and B. Shneiderman, “Visual information seeking:
Tight coupling of dynamic query filters with starfield displays,” in
Proceedings of the SIGCHI conference on Human factors in computing
systems. ACM, 1994, pp. 313–317.

[23] D. Fisher, I. Popov, and S. Drucker, “Trust me, i’m partially
right: incremental visualization lets analysts explore large
datasets faster,” Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, 2012. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2208294

[24] C. Stolte, D. Tang, and P. Hanrahan, “Multiscale visualization
using data cubes,” IEEE Transactions on Visualization and Computer
Graphics, vol. 9, no. 2, pp. 176–187, 2003.

[25] L. Lins, J. T. Klosowski, and C. Scheidegger, “Nanocubes for
real-time exploration of spatiotemporal datasets,” Visualization and
Computer Graphics, IEEE Transactions on, vol. 19, no. 12, pp. 2456–
2465, 2013.

[26] TIBCO Spotfire. Data Visualization and Analytics Software. http:
//spotfire.tibco.com/. Accessed:2017-12-15.

[27] Tableau Software. Business Intelligence and Analytics. http://
www.tableau.com/. Accessed:2017-12-15.

[28] H. Piringer, C. Tominski, P. Muigg, and W. Berger, “A multi-
threading architecture to support interactive visual exploration,”
IEEE Transactions on Visualization and Computer Graphics, vol. 15,
no. 6, pp. 1113–1120, 2009.

[29] S. Kandel, R. Parikh, A. Paepcke, J. M. Hellerstein, and J. Heer,
“Profiler: Integrated statistical analysis and visualization for data
quality assessment,” in Proceedings of the International Working
Conference on Advanced Visual Interfaces. ACM, 2012, pp. 547–554.

[30] H.-J. Schulz, M. Angelini, G. Santucci, and H. Schumann, “An
enhanced visualization process model for incremental visual-
ization,” IEEE transactions on visualization and computer graphics,
vol. 22, no. 7, pp. 1830–1842, 2016.

[31] C. Hurter, “Image-based visualization: interactive multidimen-
sional data exploration,” Synthesis Lectures on Visualization, vol. 3,
no. 2, pp. 1–127, 2015.

[32] J.-D. Fekete and C. Plaisant, “Interactive information visualization
of a million items,” in Information Visualization, 2002. INFOVIS
2002. IEEE Symposium on. IEEE, 2002, pp. 117–124.

[33] N. K. Govindaraju, B. Lloyd, W. Wang, M. Lin, and D. Manocha,
“Fast computation of database operations using graphics pro-
cessors,” in Proceedings of the 2004 ACM SIGMOD international
conference on Management of data. ACM, 2004, pp. 215–226.

[34] C. Hurter, B. Tissoires, and S. Conversy, “Fromdady: Spreading
aircraft trajectories across views to support iterative queries,” IEEE
transactions on visualization and computer graphics, vol. 15, no. 6, pp.
1017–1024, 2009.

[35] Z. Liu, B. Jiang, and J. Heer, “immens: Real-time visual querying
of big data,” in Computer Graphics Forum, vol. 32, no. 3pt4. Wiley
Online Library, 2013, pp. 421–430.

[36] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih,
“Pycuda and pyopencl: A scripting-based approach to gpu run-

time code generation,” Parallel Computing, vol. 38, no. 3, pp. 157–
174, 2012.

[37] M. M. Chakravarty, G. Keller, S. Lee, T. L. McDonell, and V. Grover,
“Accelerating haskell array codes with multicore gpus,” in Pro-
ceedings of the sixth workshop on Declarative aspects of multicore
programming. ACM, 2011, pp. 3–14.

[38] T. Rompf and M. Odersky, “Lightweight modular staging: a prag-
matic approach to runtime code generation and compiled dsls,” in
Acm Sigplan Notices, vol. 46, no. 2. ACM, 2010, pp. 127–136.

[39] B. Catanzaro, S. Kamil, Y. Lee, K. Asanovic, J. Demmel, K. Keutzer,
J. Shalf, K. Yelick, and A. Fox, “Sejits: Getting productivity and
performance with selective embedded jit specialization,” Program-
ming Models for Emerging Architectures, vol. 1, no. 1, pp. 1–9, 2009.

[40] M. Harris, J. Owens, S. Sengupta, Y. Zhang, and A. Davidson,
“CUDPP: CUDA data parallel primitives library,” http://gpgpu.
org/developer/cudpp, 2009.

[41] E. H.-H. Chi, “A taxonomy of visualization techniques using
the data state reference model,” in Information Visualization, 2000.
InfoVis 2000. IEEE Symposium on. IEEE, 2000, pp. 69–75.

[42] D. Florescu and G. Fourny, “Jsoniq: The history of a query lan-
guage,” IEEE internet computing, vol. 17, no. 5, pp. 86–90, 2013.

[43] K. Kaur and R. Rani, “Modeling and querying data in nosql
databases,” in Big Data, 2013 IEEE International Conference on.
IEEE, 2013, pp. 1–7.

[44] M. Stone, A field guide to digital color. CRC Press, 2016.
[45] M. Stone and L. Bartram, “Alpha, contrast and the perception of

visual metadata,” in Color and Imaging Conference, vol. 2008, no. 1.
Society for Imaging Science and Technology, 2008, pp. 355–359.

[46] J. Heer and B. Shneiderman, “Interactive dynamics for visual
analysis,” Queue, vol. 10, no. 2, p. 30, 2012.

[47] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven,
highly-scalable dragonfly topology,” in ACM SIGARCH Computer
Architecture News, vol. 36, no. 3. IEEE Computer Society, 2008,
pp. 77–88.

[48] J. K. Li, M. Mubarak, R. B. Ross, C. D. Carothers, and K.-L. Ma,
“Visual analytics techniques for exploring the design space of
large-scale high-radix networks,” in IEEE International Conference
on Cluster Computing, 2017, pp. 193–203.

[49] C. Ross, C. D. Carothers, M. Mubarak, P. Carns, R. Ross, J. K.
Li, and K.-L. Ma, “Visual data-analytics of large-scale parallel
discrete-event simulations,” in Performance Modeling, Benchmark-
ing and Simulation of High Performance Computer Systems (PMBS),
International Workshop on. IEEE, 2016, pp. 87–97.

[50] M. Kruisselbrink, “File API,” W3C, W3C Working Draft, Oct. 2017,
https://www.w3.org/TR/2017/WD-FileAPI-20171026/.

Jianping Kelvin Li is a graduate student in the
VIDI lab at the University of California, Davis,
studying computer science. His research inter-
ests include data management, visual analytics,
and high-performance computing. The mission
of his research is to help more people under-
stand complex information and discover new
knowledge by using data analytics and visualiza-
tion technologies. Jianping received a BS degree
in electrical and computer engineering from the
University of California, Davis.

Kwan-Liu Ma is a professor of computer sci-
ence, University of California, Davis, where he
leads the VIDI Lab and the UC Davis Center
for Visualization. He received his PhD degree
in computer science from the University of Utah
in 1993. His research interests include visualiza-
tion, computer graphics, high-performance com-
puting, and human-computer interaction. Profes-
sor Ma received the 2013 IEEE VGTC Visu-
alization Technical Achievement Award for his
significant research contributions to the field of

visualization. He is presently the AEIC of IEEE CG&A. Professor Ma is
a fellow of the IEEE.

https://www.khronos.org/webgl/
https://www.khronos.org/webgl/
http://dl.acm.org/citation.cfm?id=2208294
http://spotfire.tibco.com/
http://spotfire.tibco.com/
http://www.tableau.com/
http://www.tableau.com/
http://gpgpu.org/developer/cudpp
http://gpgpu.org/developer/cudpp

	Introduction
	Related Work
	Visualization and Graphics Toolkits
	High-Performance Visualization Techniques

	Design
	System Model
	Data Model
	Execution Model

	Programming Interface
	Data Transformation
	Visual Mapping
	Interaction
	Control Flow
	Perception Enhancement

	Parallel Processing Framework
	Data-Parallel Primitives
	Runtime GPU Code Generation
	Parallel Transformation and Visualization

	Implementation
	Data Management
	Visualization Rendering
	GPU Shader Programs

	Performance Benchmarks
	Benchmark Methods
	Data Transformation Performance
	Visualization Performance

	Applications
	Supercomputing Network Behavior
	Large-Scale Discrete-Event Simulation
	P4 Player

	Discussion
	Expressiveness and Performance
	Optimization and Extension
	Limitations and Future Work

	Conclusion
	References
	Biographies
	Jianping Kelvin Li
	Kwan-Liu Ma

