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Abstract—High-radix, low-diameter, hierarchical networks
based on the Dragonfly topology are common picks for building
next generation HPC systems. However, effective tools are lacking
for analyzing the network performance and exploring the design
choices for such emerging networks at scale. In this paper, we
present visual analytics methods that couple data aggregation
techniques with interactive visualizations for analyzing large-
scale Dragonfly networks. We create an interactive visual analyt-
ics system based on these techniques. To facilitate effective anal-
ysis and exploration of network behaviors, our system provides
intuitive, scalable visualizations that can be customized to show
various traffic characteristics and correlate between different
performance metrics. Using high-fidelity network simulation and
HPC applications communication traces, we demonstrate the
usefulness of our system with several case studies on exploring
network behaviors at scale with different workloads, routing
strategies, and job placement policies. Our simulations and
visualizations provide valuable insights for mitigating network
congestion and inter-job interference.

Index Terms—visualization, dragonfly networks, visual analyt-
ics, performance analysis

I. INTRODUCTION

High-radix and low-diameter hierarchical network topolo-
gies such as the Dragonfly [1] have become popular choices
for designing and building the next-generation high perfor-
mance computing (HPC) systems. Many new and developing
HPC systems, such as NERSC’s Cori [2] and Argonne’s Au-
rora [3] and Theta [4], are based on such network topologies.

Due to the increasing size and complexity of such networks,
parallel discrete event-driven simulation (PDES) [5], [6] has
emerged as a productive and cost-effective way to evaluate
potential designs and explore different network configurations.
However, the massive amount of data generated from large-
scale network simulations create challenges to performance
analysis and design space exploration. Much of the data
generated by PDES is similar to data generated by a real
HPC system, and thus will need to be analyzed in a similar
manner. Pure numerical methods with automated analysis
techniques, such as statistics and data mining, are insufficient
for exploratory analysis of large and complex datasets [7],
[8], so a visualization directed approach is a necessity. By
combining visualization and data mining techniques to support
exploratory analysis, visual analytics [9], [10] provides an
effective mean to extract useful information from massive net-
work performance data, providing insights for understanding
complex network behaviors and improving system designs.

In this paper, we present a visual analytics system for
exploratory analysis of large-scale Dragonfly networks. The
design of our system has three primary goals with different
challenges to be addressed.

Scalable Visualization. To analyze complex HPC inter-
connects with a large number of network links, routers,
and compute nodes connected in a hierarchical structure,
scalable visualizations are needed to depict and correlate
various performance metrics and the structural properties at
multiple granularities. Our visual analytics methods adapt data
aggregation techniques to create scalable visualizations for
summarizing the entire network with various levels of detail
and showing the correlation between different performance
metrics.

Flexible Exploration. Exploring the design space of Drag-
onfly networks requires domain expertise and background
knowledge to steer the exploration process for studying dif-
ferent network behaviors, such as congestion and inter-job
interference. Our visual analytics system allows customized
visualizations to be flexibly created for the exploration task
on hand, so that background knowledge can be easily applied
to the exploration.

Simulation Integration. We aim to provide support for
design space exploration using network simulations. Our
system effectively processes and manages simulation data
to provide not only interactive exploration but also quick
comparison between simulation runs of different network
configurations. Customized visualizations can be leveraged to
effectively explore and compare selected performance metrics
from different network configurations. We team up our visual
analytics system with CODES [11], a high-fidelity network
simulation toolkit, to explore network behaviors of large-scale
Dragonfly networks. With effective visual analytics methods
supporting the analysis of network simulations, the combined
toolkits can be a powerful research vehicle for accelerating the
design and development of HPC networks.

By analyzing network behaviors using our visual analytics
system with CODES simulations, we demonstrate the advan-
tages of our techniques and the usefulness of our system with
several case studies that explore routing strategies, workload
characteristics, job placement policies, and inter-job interfer-
ence. By achieving our system design goals and using our
system for exploring the design space of large-scale Dragonfly
networks, we make the following contributions:



• We introduce visual analytics techniques to support ex-
ploratory analysis of large-scale HPC networks, and cre-
ate an interactive analysis system based on these tech-
niques to support design space exploration of Dragonfly
networks.

• We develop methods and a user interface for rapidly
specifying customized visualizations to explore various
network behaviors and compare simulation results.

• We use our visual analytics system and network sim-
ulations to analyze representative workload from three
parallel HPC applications. Our visualizations provide
valuable information about the structural and temporal
characteristics of each workload. Our analysis provides
unique insights to the effect of adaptive routing and ran-
dom job placement on inter-job interference and network
congestion.

• Based on the insights from visual analysis of network
behaviors, we develop a mitigation strategy that uses two
different job placement policies with random allocation
to reduce the effect of inter-job interference and improve
application performance.

II. BACKGROUND AND RELATED WORK

In this section, we first describe the Dragonfly network
topology, and then we discuss related work in performance
analysis of Dragonfly networks and performance analysis tools
for HPC networks.

A. Dragonfly Topology

The Dragonfly network is a two-tier topology composed of g
groups that are fully connected by all-to-all links. Each group
has a routers, and each router has p terminals connected to
it. Routers within a group are fully connected by local links.
There are h global links in a router that are connected to
the routers in other groups for inter-group traffic. A typical
configuration for the Dragonfly topology [1] to achieve load
balancing in network traffic is a = 2p = 2h, and the total
number of groups is g = a ∗ h+ 1.

Multiple routing strategies are proposed for Dragonfly net-
works, including minimal, non-minimal, and adaptive rout-
ing [12], [13]. Contiguous job placement policy is typically
used in supercomputer centers for allocating a consecutive set
of compute nodes to each job. Studies [14], [15] show that
various random job placement policies that randomly select a
set of groups, routers, or individual terminals for each job can
improve system performance.

B. Dragonfly Network Studies

Several studies have been conducted for analysis and evalua-
tion of Dragonfly based networks. Mubarak et al. [16] used the
ROSS [17] simulator to model large-scale Dragonfly networks
and demonstrated scalable simulation performance on both the
Blue Gene/P and Blue Gene/Q systems. Bhatele et al. [18]
used BigSim to simulate a two-level direct network based on
the Dragonfly topology and studied topology-aware mappings
of different communication patterns. Jian et al. [14] presented

a model to predict traffic of individual links on a Dragonfly
network and provide analysis for different routing strategies
and job placement policies. Yang et al. [15] used the CODES
network simulation toolkit and application communication
traces to study inter-job interference in a Dragonfly network
with 1,056 nodes. They also showed that mixing contiguous
and random node job placement policies can reduce the
effect of job interference on application performance. Most
of these studies are based on pure numerical and automated
analysis, without employing visual analytics techniques. Our
visual analytics methods are designed to complement existing
numerical methods for studying Dragonfly networks, making
analysis and exploration of large-scale networks more effec-
tive. As shown as part of previous studies [15], [19], inter-
job interference and network congestion remain as important
factors that impact network performance. Our visual analytics
methods can help develop a better understanding for the effects
of adaptive routing and random job placement policies on
performance behaviors for large-scale Dragonfly networks.

C. Performance Analysis Tools

Many performance analysis tools can be used to analyze
network performance data. Tools, such as ParaGraph [20],
Jumpshot [21], and Vampir [22] use a visualization directed
approach to analyze communication traces data. Most of these
tools are based on the use of Gantt charts for visual analysis, so
they do not scale well. Therefore, visual analytics techniques
have been introduced to analyze massive MPI traces [23],
[24], [25]. However, these works focused on the application
domain and do not consider the structural properties of the
physical network connections. Therefore, it is difficult to
apply these techniques to exploring large networks due to the
complexity in different network topologies. Some researchers
have designed visualizations based on the topological prop-
erties of the HPC networks. Sigovan et al. [26] visualized a
specialized I/O communication network in a radial node-link
approach, while the communication patterns are summarized
as 1D heatmaps along each edge, summarizing some properties
such as latency, message size, etc. In this manner, consistent
trends form rings around the network across multiple edges,
while outliers stand out by themselves. While matching the
visualization layout with the network topology, Landge et
al. [27] visualized a 3D Torus network using a 3D view
and multiple 2D projections to analyze the effect of MPI
job mapping on network traffic. More recently, Bhatele et
al. [19] modeled the behavior of the Dragonfly network
using the Damselfly simulator and analyzed the effects of
job placements and parallel workloads by visualizing all the
routers and global channels between the routers in a radial
layout. Most of these approaches visualized all the individ-
ual entities without using any data aggregation techniques.
For large-scale hierarchical networks, direct visualization of
the network topology does not scale, and thus scalability
must be taken care of. In our work, we adapt hierarchical
data aggregation and projection techniques to create high-
level representation that preserves important structures and
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Fig. 1: Data flow for visualization and analysis of simulated networks.

patterns in a large network. Moreover, existing tools usually
use fixed visualization layouts for performance analysis and
rarely provide flexibility for visualization customization. Fixed
visualization layouts are usually designed for specific analysis
tasks and thus cannot support general exploration of the design
space of HPC networks. Our visual analytics system uses an
extensible visualization layout with flexible customizations,
allowing users to apply background knowledge to customize
the visualization for different exploratory tasks. With effective
visual analytics methods and customizable, scalable visualiza-
tions, our system supports effective analysis and exploration
of large-scale network behaviors.

III. SIMULATION AND DATA PREPROCESSING

Our visual analytics system is designed to support
the CODES network simulation toolkit [11] for explor-
ing the design spaces of large-scale Dragonfly networks.
CODES employs the Rensselaer Optimistic Simulator System
(ROSS) [17], [28], a high-performance, parallel discrete-event
simulator, to allow massive simulations to be run accurately at
a packet level detail. The CODES simulation framework can
simulate network workloads using synthetic traffic patterns.
In addition, workloads to the simulated network can also be
generated using parallel application traces from the DUMPI
MPI trace library as part of SST macro toolkit [29].

For all the global links, local links, and terminals in the
simulated networks, the following performance metrics are
collected:

• Traffic on network links: The amount of data transferred
in all the global, local and terminal links are recorded in
the simulation.

• Link saturation time: The total time during which the
buffers of the network virtual channels are full in the
simulation.

• Average hop counts and packet latency: In addition to the
traffic and saturation time for each terminal-router links,
the simulation also records the average number of hops
traversed and packet latency for each terminal.

To enable detailed exploration of network behaviors, we
have extended the instrumentation capability in CODES to
capture time series data for any given sampling rate, so we
can visualize and analyze the temporal behaviors of workload
characteristics and network performance. Users can select a
certain phase or time range of the simulation for analysis
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Fig. 2: (a) Entity tree is our basic data structure used for aggregating
data with multiple entities. (b) An example of hierarchical data ag-
gregation using the top-down approach [30] based on the topological
properties of the Dragonfly network.

and exploration. Figure 1 shows the data flow and coor-
dination between CODES and our visual analytics system.
From the inputs and outputs of CODES, we integrate and
index all the data for effective visualization and analysis of
large-scale Dragonfly networks. Network settings, such as
job mapping information and connections of the network
links, are retrieved from simulation configuration files. By
integrating and preprocessing the simulation outputs with the
network configuration files, our system can properly visualize
the network connections and correlates performance metrics.
Figure 2a shows the general data structure in our system for
managing network performance data. The attributes of router
id and router rank are used to reference data between routers
to network links or terminals.

By closely coordinating with the CODES toolkit, simulation
results can be immediately visualized and analyzed with our
visual analytics system. Insights and new knowledge can be
gained quickly with effective visual analytics, which can be
used to change network configurations or refine the design
choices in new simulation runs. Our system also provides ef-
fective visualizations for comparing simulation results between
different network configurations, allowing users to better com-
municate and present the information and discoveries in the
results.

IV. VISUAL ANALYTICS METHODS

We couple hierarchical data aggregation [30], [31], [32]
with radial visualization layouts [33], [34], and extend both
to support visual analysis of large-scale networks. By pro-
viding an interactive user interface for our visual analytics
methods, our system allows users to create projection views
of the aggregated data, which summarizes the characteristics
of network performance. The projection views can be used
with other visualizations to enable interactive exploration of
various aspects of the network at different levels of granularity.

A. Data Aggregation

To create scalable visualizations for effective visual analy-
sis, we aggregate the network performance data using tech-
niques based on hierarchical clustering and binned aggrega-
tion. By considering the structures of the network topology,
we iteratively cluster the data based on one of the network
performance metrics or attributes to build an aggregate tree



with multiple levels of detail about the network. Figure 2b
shows an example of hierarchical aggregation on performance
data of a Dragonfly network. At first, the performance data of
the entire network is aggregated by the rank of the routers
in a group, then it can be aggregated based on the link
of the routers. To add another level of aggregation, we can
further divide the global links into a histogram of six bins,
for example, based on accumulated traffic of the link. For
aggregate items, sum is used for most performance metrics,
except the average value is used for the metric of average hop
count and packet latency for the terminals. Because there are
multiple entities (e.g., routers, terminals, and network links)
in the network with each entity having different performance
metrics (e.g., link saturation time and average packet latency),
the entity tree (Figure 2a) is used as mappings for aggregating
data and creating projection views. A detailed example is
provided in Section IV-B2 after we presented our visualization
techniques.

B. Visualization Techniques

To make use of the aggregate tree for analyzing and ex-
ploring large-scale network performance data, we use intuitive
and scalable visualization to overview the entire network,
analyzing different levels of details and correlating between
various performance metrics in the network. Our visualization
approach uses a radial layout, which is effective for depicting
hierarchical data and providing useful insights about the infor-
mation hierarchies [33]. Different performance metrics can be
stacked in a hierarchical radial layout, providing overviews
and correlations of hierarchical data. Lines or ribbons in
the center of the radial layout can show the connections
and communication patterns when visualizing interconnection
networks, which helps for detecting network congestions and
identifying bottlenecks. The high degree of symmetry in radial
layouts can be helpful for checking traffic load balancing and
comparing network behaviors.

1) Network Link Bundling: Our method also effectively
visualizes a large number of network links as bundled connec-
tions for facilitating effective visual analysis and exploration.
During data aggregation, we keep track of the local and global
links between the routers and bundle the connections between
the aggregate items. Two visual encodings (color and size) can
be used for visualizing the traffic and saturation time of the
network links, as shown in Figure 3. For example, if size is
used to encode traffic and color is used to encode saturation
time, the color of the ribbon represents the maximum satura-
tion between the two ends. This visual mapping is effective for
analyzing network congestions. Our visual encoding method
for network links has an advantage over the matrix views,
which are common visualizations used for performance and
communication data. As our method can depict both traffic
and saturation in one visual item, it is more effective for
coordinating the network links and to see correlations between
two performance metrics.

2) Visual Mapping: A key to create useful visualizations is
selecting good visual mappings for the analysis tasks on hand.

Fig. 3: Visual encoding for network links.

A visual mapping transforms data to visualization by mapping
data attributes to the encodings (e.g., color and size) of visual
items. While network performance data often has many more
performance metrics than the number of visual encodings that
we can use, the decisions for data aggregation and visual
mapping require domain expertise and background knowledge.
To allow users to easily steer the analysis and exploration
by applying background knowledge, our system provides a
visual interface (Figure 4a) for specifying data aggregation,
projection, and visual mapping. The configuration is then used
for data transformation (Figure 4b) to create the hierarchical
radial visualization. When visualizing the aggregate tree using
hierarchical radial visualizations, each ring in the radial layout
represents one level of the tree, and each visual item on the
ring is mapped to an aggregated performance metric. The
result is the aggregated projection view of the whole network
with multiple levels of detail, as shown in Figure 4c.

In the visual interface, users can select the performance
metric or attribute for specifying the data aggregation. Users
can control the number of layers in the visualization by adding
a new level to the hierarchy or removing the existing ones. For
each level, the user can select the entity and specify the visual
mappings. Either the performance metrics of individual entities
or their aggregate representations (toggling via the checkbox)
can be visualized in the radial view. All performance metrics
can be visualized as heatmaps, bar charts, or scatter plots in
a circular fashion and stacked hierarchically to show correla-
tions. The 1-D heatmap can be color coded for one metric.
The bar chart can be visually encoded with the color and size.
The 2-D heatmap can be encoded using color plus the radial
and angular coordinates (or x and y for Cartesian coordinates).
The scatter plot can have up to 4 visual encodings - color, size,
x and y coordinates. The type of the plot used in each layer is
based on the number of visual encodings defined by the user.
A set of color schemes is provided for users to select at each
level.

Our system also allows users to save the specification for
the data transformation and visualization for analyzing another
dataset or comparing between datasets. When comparing dif-
ferent datasets, the scale for visual encoding uses the same
minimum and maximum values, which ensure fair comparison.

3) Projection View: As in the example given in Figure 4,
the network performance data is first aggregated by the rank
of the router within a group. The ribbons in the center of the
radial visualization shows the intra-group connections between
the routers with size representing the traffic and color repre-
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Fig. 4: Visual interface component (a) for specifying the data transformation and visual mapping (b) to create a hierarchical radial visualization
(c), which is showing three jobs running on a Dragonfly network that has 73 groups with 12 routers and 72 terminals in each group. Scripts
with high-level specifications can be used to create projection views with different levels of detail or different perspectives of the network,
which can be used together to analyze network behaviors. The projection view in (d) shows a Dragonfly network with 73 groups aggregated
to 8 partitions, which is running three jobs assigned using the random router job placement policy. The projection view in (e) shows the
detail of the first 9 groups.

senting the saturation time (linearly interpolated from white to
blue). On the inner ring, the global link entity is projected and
aggregated by the router port and visualized as bar charts with
color representing the saturation time and size representing
the link traffic. On the middle ring, the terminal entity is
projected and aggregated by the router port and visualized
as 1-D heatmaps to show the aggregated saturation time. On
the outer ring, the performance metrics of individual terminals
are visualized as scatter plots. In the scatter plots, each dot
represents a terminal with colors encoding the assigned job
and sizes encoding the average packet latency. The angular
(x) and radial (y) coordinates represent average hop counts and
data size, respectively. In each scatter plot, the dots that are
closer to the edge of the circle (toward the outside) represent
terminals with higher values in average packet latency. The
hierarchical radial visualization in Figure 4c reveals the typical
intra-group communication patterns of the network and the
correlations between the selected performance metrics as well
as summarizing the performance characteristics.

Our system also allows the use of scripts for specifying
projection views with more complex configurations. The script

uses a key-value pair syntax (Figure 4d and 4e). Using scripts
to specify the projection view is similar to using the visual
interface but with more advanced configurations, such as
filtering and using more than one attribute for aggregation
(the blue and purple lines). The binMax parameter (yellow
line) in Figure 4d limits the maximum number of bins for
the aggregation. An extra binned aggregation is automatically
performed if the result of data aggregation is greater than
this limit. The resulting projection view shows a Dragonfly
network with 73 groups aggregated to 8 partitions, with
each partition containing multiple groups. Multiple projection
views can be used together to show different levels of detail.
Figure 4e shows a projection view with more details for the
first 9 groups of the Dragonfly network. The filter operation
in the script can be used to select a subset of the network for
visualization.

C. Interactive Analysis and Exploration

Figure 5 shows the primary user interface of our visual
analytics system. The customizable projection view can be
used together with the other views to facilitate an effective
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process for interactive analysis and exploration of network
performance. The detail view contains two scatter plots and a
parallel coordinates plot [35]. The two scatter plots show the
traffic and saturation of all the global and local links, while the
parallel coordinates plot shows the performance metrics of all
the terminals. The detail view thus provides a good context of
the network performance, with useful background information
that can help users decide how to configure the projection
views for correlating performance metrics and revealing po-
tential performance problems. The timeline view (Figure 5c)
shows temporal statistics of either the total traffic/saturation
for all type of network links, or the normalized mean values
for the performance metrics of the terminals. A specific time
range can be specified from the time line view to select the
data to be shown in the projection and detail view. The detail
view can also be used for filtering data or selecting subsets
of the network. For interactive analysis and exploration, users
can brush the axes of the parallel coordinate plot in the detail
view for filtering data, and the projection views will be updated
accordingly to represent the selected data. To examine details
on demand, users can select a visual aggregate in the projection
view to highlight (in yellow) the corresponding entities in the
detail view. Such interactive exploration can reveal potential
performance problems and bottlenecks.

V. DRAGONFLY NETWORK ANALYSIS

In this section, we use our visual analytic methods to study
various factors that impact the performance of large-scale
Dragonfly networks, and we compare and explore the design
choices in different network configurations. In all our case
studies, we use the Dragonfly network model proposed by

Kim et al. [1]. We vary the scale of the network from 2,550
to 9,702 terminals. The performance metrics described in Sec-
tion III are used for analyzing network performance. We use
different synthetic workloads (nearest neighbor and uniform
random traffic patterns) as well as workloads generated by
communication traces from HPC applications.

A. Communication Patterns

As communication patterns can impact network perfor-
mance, knowing the correlation of the communication pattern
with the underlying network topology is helpful for identi-
fying and avoiding bottlenecks. The projection view in our
system can be used to reveal the communication patterns in a
Dragonfly network, as well as correlating performance metrics
to the communication pattern. Two examples are provided in
Figure 6, which shows the results for two Dragonfly network
simulations with 5,256 terminals running synthetic workloads
using adaptive routing. The visualizations are created by ag-
gregating the data by router rank. With the color of ribbons in
the center showing the traffic on the local links, the concentric
rings (from innermost to outermost) show the saturation time
of the local links, global links, and terminals, respectively.
For nearest neighbor workload, only one link between each
pair of routers has traffic flow, as the terminals are only
sending packets to their closest neighbor. Because of adaptive
routing, we can also see some low traffic on other local
links as they are used for non-minimal route in order to
avoid congestion. For uniform random traffic, the terminals are
randomly communicating with each other. Since this workload
is balanced, the bundled links in the projection view have about
the same amount of traffic, thus are shown with the same color.
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Fig. 6: Projection views showing intra-group communication patterns
and the correlation between the saturation time of each type of
network links on a Dragonfly network with 5,256 terminals using
adaptive routing.

Using the same configuration for the projection view, Fig-
ure 7 shows a Dragonfly network of 2,550 terminals running
the Algebraic Multigrid Solver (AMG) application with 1,728
MPI ranks. The AMG applciation has a 3D nearest neighbor
communication pattern, where each terminal communicates
with three other neighboring ranks instead of communicating
to just one nearest neighbor. Therefore, more local links have
higher traffic in AMG when comparing to the nearest neighbor
traffic pattern.

In Figure 8, the projection views show the global link
traffic in a Dragonfly network of 9,702 terminals running the
uniform random workload, with the concentric rings (from
inner to outer) depicting global link saturation time (color),
local link traffic and saturation time (size and color), and
terminal link saturation time, respectively. The projection view
configurations in Figure 7 and Figure 8 can be used together to
reveal both the inter-group and intra-group traffic patterns, al-
lowing visual exploration of the correlation between the traffic
patterns and the selected performance metrics. The correlation
shown in circular hierarchies of the projection views helps us
gain insights into the workload characteristics and network
performance problems. Without the visual aggregation and
summary provided in the projection views, it’s difficult to see
such correlations in a large-scale network.

B. Routing Strategies

An important factor that determines the performance of a
Dragonfly network is the routing strategy for sending packets.
To effectively compare routing strategies and network per-
formance, projection views with the same configuration and
visual encoding scales can be used. In Figure 7, we com-
pare the network performance between minimal and adaptive
routing strategies for the AMG application. As the colors
of the ribbon encode the local link traffic and the colors
of the rings encode saturation time of the local, global and
terminal links, the figure clearly shows that adaptive routing
results in higher intra-group traffic while having much lower
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Adaptive routing 
improves traffic flow 
via load balancing.

Less saturation 
on local links 
with adaptive 
routing.

Higher saturation 
on global and 
terminal links with 
minimal routing.

Global link sat. time (ns)

Fig. 7: Adaptive routing causes higher usage of local links and lower
saturation time on all type of links on a Dragonfly network of 2,550
terminals running the AMG application.
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Fig. 8: Uniform random traffic on a Dragonfly with 9,702 terminals.
Adaptive routing causes higher inter-group traffic, lower local link
saturation time, and higher average hop counts and packet latency.

saturation time for all type of network links when comparing
to minimal routing. The network performance of minimal
and adaptive routing for the uniform random workload is
compared in Figure 8. By comparing the colors of the ribbons
and the rings in the two projection views, it is clear that
adaptive routing leads to higher usage of the global and
local links than minimal routing. This is because adaptive
routing randomly selects proxy groups for routing packets
non-minimally to avoid network congestion, which doubles
the bandwidth of the global links and leads to higher local link
traffic in the proxy groups. Despite of higher traffic, the local
links have no saturation with adaptive routing. On the other
hand, minimal routing has a low utilization of local links but
causes high saturation due to path conflicts. For average packet
latency and hop count, the scatter plots in the projection views
clearly show that adaptive routing results in higher hop counts
and packet latency. As shown in this case study, our visual
analytics approach allows fast and effective comparisons of
different configurations for evaluating design choices of large-
scale networks.



C. Application Performance Characterization

It is important to study the performance characteristics
of Dragonfly networks using common workloads in parallel
applications. Here we study and explore the network behaviors
of the Dragonfly network using workloads captured from
application traces which represent exascale workload behavior
as part of the DOE Design Forward Program [36].

In particular, we analyze three of these communication
traces:

• AMG: An Algebraic Multigrid Solver for unstructured
mesh physics packages [37].

• AMR Boxlib: A single time step of an AMR run with
compressible hydrodynamics and self-gravity [38].

• MiniFE: A Finite Element mini-application that uses
a simple un-preconditioned conjugate-gradient algorithm
to solve a sparse linear-system from the steady-state
conduction equation [39].

Each of these applications has a different but representative
communication pattern. Table I shows the information about
the three applications. To analyze the application workload
characteristics and the associated network performance be-
haviors, we run each application individually in a simulated
Dragonfly network of 2,550 terminals. In all three simulations,
we use adaptive routing and a contiguous job placement policy.
Because the MPI ranks in each of the three applications are
fewer than the number of terminals in the network, unused
terminals are filtered out in the analysis.

Figure 9 shows the performance characteristics of the Drag-
onfly network with the three applications running individually.
The projection views are using the same configuration as the
one in Figure 4 except that the outermost ring is not used.
They reveal the intra-group communication patterns with the
correlations between the global link traffic/saturation and ter-
minal link saturation for the three application workloads. The
projection views in Figure 10 are based on the configuration
used in Figure 4d, but the color encoding on the outer ring is
changed to represent the average packet latency of the terminal
since only one job is running in each of the simulations.
Using the projection views in both Figures 9 and 10, we
can effectively analyze the performance characteristics of each
application workload. We can see that all three applications
have high variances for the average package latency and hop
counts, as shown in the outermost rings in the projection views.
Both MiniFE and AMG have a balanced traffic across the
local and global links. For AMG, most of the local links have
the same level of saturation, with only a few of them having
slightly higher saturation time. The global links connected to
the first few groups apparently have much lower saturation

Application Ranks Data Comm. Pattern
AMG 1728 1.2GB 3D nearest neighbor
AMR Boxlib 1728 2.2GB Irregular and sparse
MiniFE 1152 147GB Many-to-many

TABLE I: Summary of Applications.
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Fig. 9: Intra-group communication patterns and correlations between
performance metrics of the local, global, and terminal links.
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Fig. 10: Inter-group communication patterns and correlations between
local link saturation and terminal performance metrics.

time than other global links. MiniFE has a many-to-many
communication pattern, but the saturation time on most of the
local links and global links is low, while only several local and
global links have much higher saturation time. We can also
see that the high saturation on local links is back pressure by
the global links. On the other hand, AMR Boxlib has a very
unbalanced load for both inter- and intra-group traffic, where
the routers in the first two groups created more than 60 percent
of the inter-group traffic, and the routers within the first 2 ranks
contributed more than 50 percent of the intra-group traffic. In
addition, these global and local links have high saturation time,
while other links have very low or no saturation. If some of
the traffic on these links can be redistributed to other links,
the performance of AMR Boxlib would likely be improved.

In additional to the structural characteristics, we also an-
alyze the temporal characteristics of the three application
workloads and their effects on network performance. Figure 11
shows temporal characteristics of the three application work-
loads, with the timeline plots showing the total traffic over
time for all types of network links. We can see that the three
applications have very different temporal characteristics. An
interesting observation is from the timeline plot for AMG,
where it shows three traffic bursts in the beginning, middle,
and near the end of the runtime. To further investigate the
performance characteristics during the traffic bursts, we can
analyze the link saturation over time, which is shown in Fig-
ure 5c. As we select the time range associated with the second
traffic burst, the projection and detail views are showing the
network performance behaviors of the selected time range.



AMG (sampling rate = 0.02ms) 

AMR Boxlib (sampling rate = 1ms) 
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Fig. 11: Temporal characteristics of the network link traffic for three
applications with different communication patterns.

From the projection view, we can see that only specific global
links connecting the adjacent groups are highly saturated,
while other global links have very low or no saturation. This
points out that the standard adaptive routing algorithm [1]
may be inefficient to avoid congestion during traffic bursts.
As the network traffic burst occurs so quick that caused
congestion in the minimal routes, the source router may not
been notified immediately. In this case, a more advanced
routing strategy should be used, such as progressive adaptive
routing [12], where the decision to route non-minimally should
be reevaluated every time before a non-minimal route is
selected. In addition, interactive visualizations can be used to
visually explore the network to search for abnormalities and
bottlenecks, as shown in Figure 5a and 5b. When selecting
a set of terminals with high packet latency and hop count in
the outermost ring of the projection view, highlights in the
detail views reveal that both the local links and global links
connecting this set of terminals have high saturation time,
which may lead to a performance bottleneck. If the congestion
on either the local or global link is mitigated, we would be
likely to see better packet latency for the terminals.

D. Inter-Job Interference

HPC systems usually run multiple jobs in parallel. Inter-
job interference is another important issue in Dragonfly-
based networks, which can significantly impact application
performance. Job placement policy controls the allocation of
available terminals to parallel applications (jobs), which is
crucial for mitigating inter-job interference.

In this case study, we first analyze and compare inter-job
interference for two job placement policies: random group
and random router job placement. These two policies have
been shown to bring performance gain as part of a previous
study [14]. To explore and compare their effects on application
performance, we simulate a Dragonfly network of 5,256 ter-
minals running three application traces (AMG, AMR Boxlib,
and MiniFE) in parallel. The network has a total of 73 groups,
with each group having 12 routers and each router connecting
to 6 terminals. The number of ranks and total data size of

these three applications are listed in Table I. For random
group placement, each job is assigned to a set of randomly
selected groups in the Dragonfly network. Available terminals
within the groups are assigned contiguously. For random router
placement, each job is assigned to the terminals directly
connected to a set of randomly selected routers. Figure 4e
shows how the jobs are assigned to different routers in the first
9 groups of the network with the random router job placement
policy.

Our visual analytics method provides an easy way for an-
alyzing inter-job interference. Figure 12 shows the projection
views for comparing the results of different job placement
policies. By aggregating based on the job ID, the ribbons in the
center of the projection views show global link traffic between
the four different sets of groups or routers that are either
assigned to one of the jobs (AMG, AMR Boxlib or MiniFE)
or proxies, with size representing traffic and color representing
saturation. The proxies are the routers with no terminal having
job assigned, but being used for routing packets non-minimally
in adaptive routing. In this case, the traffic on global links
across different jobs is caused by the non-minimal routes.
The size of the arcs in the projection view shows the ratios
of the total traffic on global links for the routers associated
with each job. Because the amount of global link traffic that a
job sends to and receives from are the same, the two ends of
each ribbon have equal size. The inner rings of the projection
views show the aggregated performance metrics of the local
links across router ranks, with color representing saturation
and size representing traffic amount. The outer rings show the
aggregated metrics for the terminals, with color representing
average package latency and size representing average hop
counts.

Figure 12a shows the simulation result with random group
job placement. As MiniFE is much more communication-
heavy than the other two jobs, it causes most of the traffic
on global links, and it also has a much higher usage of
local links within its assigned groups. Comparing to MiniFE,
the traffic and saturation for both local and global links are
very low for AMG and AMR Boxlib. For random router
job placement, the projection view in Figure 12b shows that
AMG and AMR Boxlib have higher usage of global links
than MiniFE for both traffic among terminals with the same
job and across terminals with different jobs. The global links
associated with MiniFE have lower saturation time than the
global links that are associated with AMG and AMR Boxlib.
The routers assigned for AMG or AMR Boxlib also have much
higher traffic and saturation on the local links when comparing
to the random group job placement. We can also see that
the global links between the routers assigned for AMG and
AMR Boxlib have the highest saturation time. All these results
are the impacts of inter-job interference and adaptive routing,
where the communication-heavy job redistributes traffic to
the routers assigned to other jobs. This causes the jobs with
less communication to have high saturation on both local and
global links. The application performance associated with the
two job placement polices is shown in Figure 12d. When
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Fig. 12: Projection views (a,b,c) comparing three different job placement policies. The insights from our visualization and analysis of the
random group and random router placements lead to the design of a new hybrid job placement policy that can mitigate inter-job interference
and improve packet latency (d) for all three applications.

changed from random group to random router job placement,
the performance of AMR Boxlib is degraded about 17%, as it
has a sparse and irregular communication pattern and the least
communication among the three jobs. However, MiniFE does
not have noticeable gain in performance. This is because the
high intra-group congestion for MiniFE prevents performance
gain from adaptive routing. On the other hand, AMG has about
26% performance gain due to adaptive routing.

Our visualizations and analysis lead to better understanding
of the coupled effect with adaptive routing and random job
placement policies on network congestion and inter-job inter-
ference, which helps us gain insights to prevent performance
degradation for AMR Boxlib. As shown by the visualiza-
tions, the minimal routes for AMR Boxlib are congested by
other communication-heavy jobs in random router placement.
To mitigate the inter-job interference that adversely impacts
the performance of AMR Boxlib, we can use a hybrid job
placement policy, where random router placement is used for
MiniFE and AMG while random group placement is used
for AMR Boxlib. This mitigation strategy can reduce inter-
job interference for AMR Boxlib while allowing MiniFE and
AMG to have performance gain with random router placement.
Figure 12c shows the simulation result for the hybrid job
placement. We can see that the traffic and saturation on both
global and local links associated with AMR Boxlib are greatly
reduced. As the performance results show in Figure 12d, the
hybrid placement policy allows all three applications to have
performance gain when comparing to the case with random
group placement. AMR Boxlib has a 14% gain in performance
instead of a 17% degradation, while AMG and MiniFE have
11% and 5% performance gain, respectively.

Here we simulate a Dragonfly network running a small num-
ber of jobs with different communication patterns for studying
inter-job interference and evaluating different job placement
policies. Our system allows us to effectively compare the
network performance and quickly check the applicability of
our optimization strategy. For cases with many more jobs
running in a network, such as in production systems, we can
select a subset of jobs for analysis. Alternatively, similar to the
example in Figure 4d and 4e, we can group the jobs based on

communication patterns or other classifications and use two
projection views, with one view showing the impact of inter-
job interference at a higher level and the other view analyzing
the detail within the selected group of jobs. More importantly,
this case study shows the effectiveness of our method for
understanding complex network behaviors, identifying the
causes of performance problems, and turning the insights from
visual analysis into optimization.

VI. CONCLUSION

This paper presents visual analytics techniques and an
interactive system for analyzing and exploring large-scale
Dragonfly networks. Our techniques facilitating interactive
analysis in user-defined novel spaces provide the needed
flexibility to evaluate and explore the complex design choices
of Dragonfly networks. As demonstrated with our case studies,
our visualization and analysis can not only help develop better
understandings of routing strategies, workload characteristics,
and job placement policies, but also provide valuable insights
for mitigating inter-job interference and network congestion,
which can be used to improve overall system performance.
Our case studies also show that simulation and visual analytics
toolkits can be used together to support effective design space
exploration of large-scale HPC networks, in which different
network configurations can be rapidly simulated, evaluated,
and explored to gain insights and knowledge for improving
system designs. We believe our visual analytics techniques
with flexible and scalable visualizations are widely applicable
for performance analysis of HPC networks and systems. In
future work, we plan to extend our system to support analysis
and exploration of other network topologies, such as Fat
Tree [40] and Slim Fly [41].
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